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Wyktad 1

2002.10.07 / 3h

1.1 Zbiory. Relacje.

Definicja 1.1 Niech A, B bedg zbiorami. Wowczas

AUB = {z:x€AVzeB} (1.1)
AnB ¥ {r:z€ ANz € B} (1.2)
A\B ¥ {(z:2€Anz¢B)} (1.3)
AxB ¥ {(z,y):z€Arye B} (1.4)
ACB & VopeA=xeB. (1.5)

Niech ponadto X bedzie uniwersum - przestrzenig. Wowczas
A X\ A (1.6)
Definicja 1.2 Zbiorem potegowym zbioru X nazywamy zbior wszystkich jego podzbioréw i oznaczamy go 2X.
Definicja 1.3 Relacjg R okreslong w iloczynie kartezjanskim zbioréw A i B nazywamy dowolny podzbidr tego iloczynu tzn.
R jest relacjg na AX B< R C AX B. (1.7)
Bedziemy oznaczaé¢ xRy < (x,y) € R.

Uwaga 1.1 JeZeli R C A x B, to mozemy rozpatrywad relacje R na D x D, gdzie DY AUB.

Ograniczymy sie wiec do relacji okreslonych na iloczynie kartezjanskim tego samego zbioru.

Definicja 1.4 Relacje R C A x A nazywamy
zwrotng wtedy i tylko wtedy, gdy

Veca TR (1.8)
przeciwzwrotng wtedy i tylko wtedy, gdy
Veca—TRT (1.9)
symetryczng wtedy 1 tylko wtedy, gdy
VoyecaTRY = yRa (1.10)
asymetryczng wtedy i tylko wtedy, gdy
VeyeaTRYy = —yRa (1.11)
antysymetryczng wtedy i tylko wtedy, gdy
VoyecA®RYANYyRx = =1y (1.12)
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przechodnig wtedy i tylko wtedy, gdy
Va,y,2cATRY ANYyRz = 2Rz (1.13)

spojng wtedy i tylko wtedy, gdy
Va.y 2achodzi doktadnie jedna z mozliwosci xRy albo yRz albo x =y (1.14)

Przyktad 1.1 Relacja réwnoleglo$ci dla prostych na plaszczyinie jest zwrotna, symetryczna i przechodnia.
Relacja prostopadtosci dla prostych na plaszczyznie jest przeciwzwrotna, symetryczna.
W zbiorze liczb rzczywistych relacja mniejszo$ci jest przeciwzwrotna, asymetryczna, przechodnia i spojna.

W zbiorze liczb rzezywistych relacja niewickszosci (<) jest zwrotna, antysymetryczna i przechodnia.
Definicja 1.5 Relacje R nazywamy relacjg réwnowaznosci wtedy ¢ tylko wtedy, gdy jest zwrotna, symetryczna i przechodnia.

Definicja 1.6 Niech X # () oraz niech < bedzie relacjq okreslong na X x X . Mdwimy, ze para (struktura) (X, <) jest zbiorem
uporzgdkowanym wtedy 1 tylko wtedy, gdy < jest spojna ¢ przechodnia.
Relacje < nazywamy porzgdkiem na zbiorze X.

1.2 Ciato liczbowe i cialo uporzadkowane

Definicja 1.7 Niech F # 0. Strukture (F,+,0,-,1) nazywamy cialem wtedy i tylko wtedy, gdy speinia nastepujace warunki

0eFALEFAO#L (1.15)
+:FxF—-FN-:FxF—F (1.16)
Voyert +y=y+a (1.17)
Veyzer(T+y)+2z=2+ (y+2) (1.18)
Veerz+0=2x (1.19)

Veerd—serz+ (—2) =0 (1.20)
Voyer® -y =y-x (1.21)
Voyzer(z-y)-z=z-(y-2) (1.22)
Veerz-1=1 (1.23)
Vaer\(o}do—terz-a ' =1 (1.24)
Voyzert - (y+2)=z-y+a-2 (1.25)

Definicja 1.8 Cialo (F,+,0,-,1) nazywamy ciatem uporzgdkowanym wtedy i tylko wtedy, gdy istnieje porzedek < w zbiorze

F spelniajgcy warunki

Voyeery <z=>zx+y<az+z (1.26)
Veyert >0Ay >0=>2-y>0 (1.27)

Oznaczamy je przez (F,+,0,-,1,<)

Twierdzenie 1.1 Niech (F,+,0,-,1) bedzie cialem. Wtedy dla dowolnych x,y,z € F zachodzi

r+y=zr+z = y==z (1.28)
r+y=z = y=0 (1.29)
z+y=0 = y=-—=x (1.30)

—(—x) == (1.31)
r#0ANzy=22 = y=z (1.32)
r#ONzy=2 = y=1 (1.33)
r#0ANzy=1 = y=a" (1.34)
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r#0 = (@) l=2 (1.35)
0x =0 (1.36)
r#£0ANy#0 = z2y#0 (1.37)
(—2)y = —(zy) = 2(~y) (1.38)
(—2)(~y) = zy (1.39)
Twierdzenie 1.2 Niech (F,+,0,-,1,<) bedzie cialem uporzgdkowanym. Wtedy dla dowolnych xz,y,z € F zachodzi
x>0 & —zx<0 (1.40)
r>0Ny<z = zy<azz (1.41)
r<0ANy<z = zy>zxz (1.42)
r#£0 = 2°>0 (1.43)
1>0 (1.44)
O<z<y = O0<yl<ag! (1.45)
Definicja 1.9 Niech (F,+,0,-,1) bedzie cialem. Niech ponadto x,y € F. Okreslamy dzialania
—:FxF—F x—ydéfx—i—(—y); (1.46)
/ FxF—F x/ydéfxy_l. (1.47)
1.3 Kresy.
Uwaga 1.2 Piszemy dla x,y € X, gdzie (X, <) jest zbiorem uporzqdkowanym
r<ysr<yabor=y (1.48)

Definicja 1.10 Niech X bedzie zbiorem uporzqgdkowanym przez relacje <. Niech ponadto ) # A C X.
Mowimy, ze zbidr A jest ograniczony z gory (z dolu) wtedy i tylko wtedy, gdy istnieje taki element 5 z X, Ze dla dowolnego
elementu x z A zachodzi x < 0 (8 < x).

Przyktad 1.2 Dla przedzialu ]0, 1] ograniczeniami gérnymi sq wszystkie liczbe nie mniejsze niz 1, a ograniczeniami dolnymi

sq liczby nie wieksze niz 0.

Definicja 1.11 Niech X bedzie zbiorem uporzqgdkowanym przez relacje <. Niech ponadto ) # A C X.
Mowimy, Ze element « jest ograniczeniem gérnym (dolnym) zbioru A wtedy i tylko wtedy, gdy dla dowolnego x € A zachodzi
r<a(a<x)

Definicja 1.12 Niech X bedzie zbiorem uporzqgdkowanym przez relacje <. Niech ponadto ) # A C X bedzie podzbiorem
ograniczonym z gory (z dolu).
Element « jest kresem gornym (dolnym) zbioru A wtedy i tylko wtedy, gdy

(i) « jest ograniczeniem gdrnym (dolnym) zbioru A

(i) dla dowolnego elementu y z X takiego, ze y < a (v < y) wynika, Ze y nie jest ograniczeniem gérnym (dolnym) zbioru

A

Zauwazmy, ze w zbiorze liczb rzeczywistych, o ktorych jest mowa w nastepnej czesci wyktadu kresy definiujemy nastepu-
jaco:

Definicja 1.13 Niech 2bior ) # A C R bedzie ograniczony z dotu. Liczba o jest kresem dolnym zbioru A wtedy i tylko wtedy,
gdy

Veeaa < 2 (1.49)

Vesodrear < a—+¢ (1.50)
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Definicja 1.14 Niech 2biér ) # A C R bedzie ograniczony z gory. Liczba o jest kresem gérnym zbioru A wtedy i tylko wtedy,
gdy

Veear < « (1.51)

Vesodzear > a—c¢ (1.52)
Przyktad 1.3 Dla przedzialu 10, 1] kresem gérnym jest 1, a dolnym 0.

Definicja 1.15 Mowimy, Ze zbior uporzqdkowany X posiada wiasnosé kreséw dolnych wtedy i tylko wtedy, gdy dla kazdego

niepustego i ograniczonego z dotu zbioru S C X w X istnieje kres dolny zbioru S.

Uwaga 1.3 Z wlasnosci kreséw dlanych mozna udowodnié nastepujgce twierdzenie:
Niech X bedzie zbiorem uporzgdkowanym posiadajecym wiasnosé istnienia kreséw dolnych. Niech S C X bedzie zbiorem

ograniczonym z dolu. Oznaczmy przez L zbior wszystkich ograniczen dolnych zbioru B. Wtedy
a =sup L, (1.53)

istnieje © a = inf B. W szczegdlnosci inf B istnieje w X .

1.4 Liczby rzeczywiste

Definicja 1.16 Niech p,q € Z. Liczbg wymierng nazywamy dowolna liczbe postaci %, gdzie q # 0. Zbior liczb wymiernych

oznaczamy Q.

Twierdzenie 1.3 (Zasada ciggto$é Dedekinda.) (Dowdd dla 0séb zainteresowanych - patrz W. Rudin)

Istnieje cialo uporzqdkowane R posiadajgce wlasnosé istnienia kreséw dolnych. Cialo to zawiera Q, jako podciafo.

Stwierdzenie 1.1 Niech A, B C R bedq niepuste. Wowczas

(i) jezeli B sq ograniczone z géry i A C B, to sup A < sup B

(i) jezeli B sq ograniczone z dotu i A C B, to inf A > inf B

(iii) Jezeli A jest ograniczony z gdry i B jest ograniczony z dolu oraz dla dowolnych x € A iy € B zachodzi x < y, to
sup A < inf B

Twierdzenie 1.4 (i) (Zasada Archimedesa) Jezeli v,y € R i x > 0, to istnieje taka liczba naturalna n, ze nx > y.
(ii)(Gestosé Q w R) Jezeli x,y € R i x <y, to istnieje p € Q takie, ze x < p < y.

1.5 Zadania

Zadanie 1.1 Udowodnié¢ twierdzenie 1.1.1
Zadanie 1.2 Udowodnié¢ twierdzenie 1.2.2
Zadanie 1.3 Udowodni¢ stwierdzenie 1.1(#it).

Zadanie 1.4 Co si¢ bedzie dzialo, gdy pozbedziemy sie warunku niepustosci zbioru w kresach ¢ Ile wtedy wynosi kres gorny

1 dolny zbioru pustego ?
Zadanie 1.5 Udowodnic, ze dla zbioru niepustego i ograniczonego z dotu i gory kres dolny jest niewiekszy niz kres gérny.
Zadanie 1.6 Udowodnic, ze liczba \/2 nie jest liczbg wymierng.

Zadanie 1.7 Niech ACR,BC Rt € Ry. Oznaczmy A B={a+b:a € ANbeE B} A®B={a-b:a€ ANbE B}
toA = {ta:a € A}. Udowodnié, ze jezeli zbiory A i B sq niepuste i ograniczone, to zbiory A® B,A® B to A sq tez

ogmniczone oraz

IMozna skorzystaé z ksiazki W. Rudina
2Mozna skorzystaé z ksigzki W. Rudina
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sup(A @ B) =sup A +sup B

inf(A® B) = inf A+ inf B

sup(A®@ B)=supA-supB,ACR,,BCRy
inf(A®B)=infA-inf B,ACR,, BCR,
Jezelit > 0, tosup(to A) =t -sup A

Jezelit > 0, to inf(t o A) =t -inf A.
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Wyktad 2

2002.10.14 / 3h

2.1 Liczby rzeczywiste c.d.

Twierdzenie 2.1 Dla dowolnej liczby rzeczywistej x > 0 i dowolnej liczby naturalnej n istnieje jedna i tylko jedna dodatnia

liczba rzeczywista y taka, zZe y™ = x.

Definicja 2.1 Niech x € R. Wartoscig bezwzgledng liczby x nazywamy liczbe rzeczywistq zdefiniowang nastepujgco

def
|z =
Lemat 2.1 Dla dowolnych x,y € R zachodzi
-
|z = ly| <
||
||

-

|z — y
| =yl
| =yl

>
dlax >0 . (2.1)
dla x <0
> 0 (2.2)
— |-q (23)
< 7 (2.4)
= |zllyl (2.5)
& =0 (2.6)
z| |zl
vyl &7
& —y<zx<y (2.8)
< a4yl (2.9)
<zl +yl (2.10)
< -yl (2.11)
< lz+yl (2.12)

Definicja 2.2 Czescig calkowitq liczby rzeczywistej x nazywamy liczbe calkowitq oznaczang [x], ktdra spelnia warunek

[z] <z < [z]+ 1.

Definicja 2.3 Znakiem liczby rzeczywistej x nazywamy liczbe rzeczywistq okreslong wzorem

sign(x) = sgn(z) =

Twierdzenie 2.2 Zasada indukcji matematyczne) zup

elnej.

1
0

-1

(2.13)
dla x>0
dlaxz=0. (2.14)
dlaz <0

Niech B bedzie pewna wlasnoscig. Jezeli dla wlasnosci P zachodzg nastepujgce warunki

(1) B[]
(2) VnenBn] = Pln + 1],

to wéwczas V,enPB[n].
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Definicja 2.4 Niech {ay,...,a,} CR. Sredniq arytmetyczng liczb ay,. . ., a, nazywamy liczbe réwng
ar+...+ap

2.15
- (2.15)
Definicja 2.5 Niech {a1,...,a,} C Ry U{0}. Srednig geometryczng liczb ai,. .., a, nazywamy liczbe réwng
Vay - .. an (2.16)
Definicja 2.6 Jezeli {a1,...,a,} CR\ {0}, to $rednig harmoniczng liczb aq,. .., a, nazywamy liczbe wyrazong wzorem
n
2.17
L+ & (2.17)
Twierdzenie 2.3 Niech {ai,...,a,} C Ry. Wiedy
n ai+...+ap
— < a1 ..y K ——M8M8— 2.18
T TS Vme " (2.18)
2.2  Funkcje
Niech X i Y beda niepustymi zbiorami.
Definicja 2.7 Relacje R C X X Y nazywamy funkcjg (odwzorowaniem) wtedy i tylko wtedy, gdy
VeexIyey TRY (2.19)
VeexVy yoey TRY1 A TRY2 = y1 = y2. (2.20)

Funkcje oznaczamy f: X — Y. X nazywamy zbiorem argumentdw (dziedzing), zas$'Y przeciwdziedzing.
Uwaga 2.1 Nalezy pamietad, ze funkcja to uporzedkowana trdjka (f,X,Y).
Uwaga 2.2 Zbior wszystkich funkeji ze zbioru X w zbiér Y oznaczamy przez Y~

Definicja 2.8 Niech f : X — Y. Zaloimy, ze A C X. Obrazem zbioru A przy odwzorowaniu f nazywamy podzbior Y

okreslony rownoscig
def

fA={f(x):x e A} ={yeY :Jpcay = f(x)} (2.21)
Zaléoimy, Ze B C Y. Przeciwobrazem zbioru B przy odwzorowaniu f nazywamy podzbior X okreslony réwnoscig
FUB) Y {reX: f(x)e B} (2.22)

Uwaga 2.3 Obraz calego zbioru X nazywamy zbiorem wartosci funckji f. Zauwazmy, Ze zawsze jest f(X) CY, lecz nie musi
byé f(X) =Y.

Przyktad 2.1 Dla funkcji sin: R — R mamy sin(R) = [-1,1].

Definicja 2.9 Mowimy, ze odwzorowanie f : X — Y jest stale wtedy i tylko wtedy, gdy

Fyoev f(X) = {wo} (2.23)

Twierdzenie 2.4 Niech f : X — Y. Wéwczas dla dowolnych {Ay, Ay, A, 10 €T} C 2% oraz {By,B,B, :1 €3} C 2Y
zachodzi

(A1) \ f(A2) C f(A1\ A2) (2.24)
fJAa) =1 r (2.25)
€T €7
F(()A) € ) f(A) (2.26)
1€T €7
SN B\ Ba) = fH(B1) \ f~1(Ba) (2.27)
f_l(UBz) = Uf_l(Bz) (2'28)
€T 1€7
fﬁl(mBz) = ﬂfﬁl(Bz) (229)
1€TJ 1€T
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Definicja 2.10 Niech f : X — Y. Odwzorowanie f nazywamy injekcjq (odwzorowaniem réznowartodciowym lub 71-17) wtedy

i tylko wtedy, gdy

Voreex f(21) = f(22) = 21 = 22 (2.30)
Uwaga 2.4 Warunek (2.30) definicji 2.10 moze by zapisany w postaci
Vo arex®1 # T2 = f(x1) # f(22) (2.31)
Definicja 2.11 Niech f : X — Y. Odwzorowanie f nazywamy surjekcjg (odwzorowaniem "na”) wtedy i tylko wtedy, gdy
Vyey duexy = f(2) (2.32)

Definicja 2.12 Niech f: X — Y. Odwzorowanie f nazywamy bijekcjg wtedy i tylko wtedy, gdy jest surjekcjq i iniekcjq.

Definicja 2.13 Niech f : X — Y oraz g:Y — Z. ZloZeniem odwzorowan f i g nazywamy odwzorowanie h : X — Z takie,
ze

Vaexh(z) = g(f(2)). (2.33)
Piszemy wtedy h =go f.
Definicja 2.14 Niech X bedzie niepustym zbiorem. Odwzorowaniem identycznosciowym na X ( oznaczanym Idx nazywamy

takie odwzorowanie z X w X, Ze
Vxex Idx (JU) =x. (2.34)

Definicja 2.15 Niech f : X — Y bedzie bijekcjg. Odwzorowaniem odwrotnym do f nazywamy takie odwzorowanie g 1 Y — X
takie, ze
fog=ldy ANgo f=Idx . (2.35)
Oznaczamy je g = f~ 1.
Uwaga 2.5 f~1(A) bedziemy odczytywaé jako przeciwobraz zbioru A funkcji f i jako obraz zbioru A funkcji f=1.
Niech f: A — R, gdzie A C R bedzie funkcja. Niech B C A.

Definicja 2.16 Mowimy, ze f jest rosngca na zbiorze B wtedy i tylko wtedy, gdy

Vm17w263m1 < To = f(.’El) < f(l’g) (236)
Mowimy, ze f jest niemalejgca na zbiorze B wtedy 1 tylko wtedy, gdy
thmegxl < Ty = f(xl) < f(JCQ) (237)

Mowimy, Ze [ jest malejgca na zbiorze B wtedy i tylko wtedy, gdy

thwzegl‘l < T9 = f(xl) > f(xg) (238)
Mowimy, ze f jest nierosngca na zbiorze B wtedy 1 tylko wtedy, gdy
le’z2€B{L‘1 < To = f(l'l) > f(fz) (239)

Mowimy, Ze f jest monotoniczna na zbiorze B wtedy i tylko wtedy, gdy jest nierosngca lub niemalejgca na zbiorze B. Mowimy,

ze f jest Scisle monotoniczna na zbiorze B wtedy i tylko wtedy, gdy jest rosngca lub malejgca na zbiorze B.

Uwaga 2.6 JezZeli bedziemy pomijaé zbidr na ktdrym funkcja jest monotoniczna, to oznacza to, iz jest monotoniczna na calej

swej dziedzinie.
Definicja 2.17 Mowimy, ze f jest ograniczona z gory na zbiorze B wtedy i tylko wtedy, gdy

ImerVzenf(z) < M. (2.40)
Mowimy, ze f jest ograniczona z dotu na zbiorze B wtedy i tylko wtedy, gdy

ImerVzenm < f(z). (2.41)

Mowimy, Ze f jest ograniczona na zbiorze B wtedy i tylko wtedy, gdy f jest ograniczona z dolu na zbiorze B i f jest ograniczona

z gory na zbiorze B.

Uwaga 2.7 Podobnie, jak dla monotonicznosci jezeli bedziemy pomijacé zbior na ktérym funkcja jest ograniczona, to oznacza
to, iz jest ograniczona na calej swej dziedzinie.
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2.3 Ciagi liczbowe — granica ciggu
Zajmiemy sie teraz szczegénym przypadkiem funkcji, a mianowicie ciggiem liczbowym.

Definicja 2.18 Funkcje nazywamy ciggiem liczbowym (rzeczywistym) wtedy i tylko wtedy, gdy jej dziedzing jest zbidr liczb

naturalnych, a przeciwdziedzing zbior liczb rzeczywistych.

Uwaga 2.8 Cliggi oznaczamy (ay) = (an)5,. Wartos$é ciggu dla liczby naturalnej n nazywamy n - tym wyrazen ciggu i

oznaczamy go ay,.
Definicja 2.19 Mdéwimy, Ze ciag (an) ma granice réwng g wtedy i tylko wtedy, gdy

v5>03mean2m |an - g| <e (242)
Zapisujemy wtedy lim a, = g.

n—oo

Twierdzenie 2.5 JeZeli cigg posiada granice, to tylko jednag.
Definicja 2.20 Mowimy, Ze cigg jest zbiezny wtedy i tylko wtedy, gdy istnieje liczba rzeczywista g bedgca granicg ciggu.
Twierdzenie 2.6 Kazdy cigg zbieiny jest ograniczony.

Twierdzenie 2.7 (Dziatania na granicach ciggéw.)

Jezeli lim a, =a ¢ lim b, = b oraz c jest dowolna liczbg rzeczywistq, to

n—oo n—oo
lim (a, +b,) =a+b (2.43)
lim (c-a,)=c-a (2.44)
n—oo
lim (—ay,) = —a (2.45)
lim (ap, —b,) =a—1b (2.46)
lim c=c¢ (2.47)
lim (a, +c¢)=a+c (2.48)
lim (a, -b,)=a-b (2.49)
n—oo
.1 1
b#0= lim — = 7 (2.50)
b#£0= lim -2 =2 (2.51)
n—oo by b
2.4 Zadania
Zadanie 2.1 Udowodnié¢ warunki (2.2) — (2.9) lematu 2.1.
Zadanie 2.2 Udowodnié, ze dla dowolnej liczby rzeczywistej x zachodzi
. = dlax#0
sign(z) = < Izl : 2.52
gn(e) { 0 dlax =0 ( )

Zadanie 2.3 Udowodnic twierdzenie 2.3.

Zadanie 2.4 Niech X, Y # 0, f: X — Y. Udowodnié, ze funkcja jest stala wtedy i tylko wtedy, gdy
Vormsex f(z1) = fz2).

Zadanie 2.5 Udowodnié warunki (2.24), (2.25), (2.27), (2.28) twierdzenia 2.3.

Zadanie 2.6 Udowodnic, ze funkcja jest surjekcjq wtedy i tylko wtedy, gdy jej przeciwdziedzina jest réwna zbiorowi wartosci.
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Zadanie 2.7 Udowodnié, ze funkcja f: A — R, gdzie A C R jest ograniczona na zbiorze B C A wtedy i tylko wtedy, gdy
Surer, Yoenl f(z)] < M. (2.53)

Zadanie 2.8 Udowodni¢ warunek (2.44) twierdzenia 2.7.

Zadanie 2.9 Udowodnié, Ze jezeli ciag (a,) ma granice g, to ciag (lan|) ma granice |g|.

Zadanie 2.10 Udowodnié, ze dla dowolnych liczb rzeczywistych zachodzi

T+y+|z—yl
2

+y—lr—y

max{z,y} = Amin{z,y} = i 5 (2.54)
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Wyklad 3

2002.10.21 / 3h

3.1 Ciagi liczbowe c.d.

Twierdzenie 3.1 Jezeli cigg (an) jest zbiezny i zachodzi 3penVisnar > 0, to lim a, > 0.

n—oo

Whniosek 3.1 Jezeli ciggi (an) @ (by) sq@ zbieine i zachodzi 3penVisnar < b, to lim a, < lim b,
n—oo n—oo

Twierdzenie 3.2 (Twierdzenie o trzech ciggach.)

Jezeli ciggi (an) i (by) sg zbiezne i im a, = lim b, oraz zachodzi IpenVisnar < ¢ < by, to cigg (cn) jest zbieiny oraz
n—oo

. . n—oo
lim a, = lim c,.
n—oo n—oo

Definicja 3.1 Dane sq ciggi (ay,) i (bg). Mowimy, ze cigg (b) jest podciggiem ciggu (a,) wtedy i tylko wtedy, gdy istnieje
rosngcy cigg liczb naturalnych (ny) taki, ze
vkENank = by (31)

Twierdzenie 3.3 Cigg (a,,) jest zbiezny wtedy i tylko wtedy, gdy kazdy jego podcigg jest zbiezny i ich granice sq réwne.
Twierdzenie 3.4 (Bolzano - Weierstrassa) Kazdy cigg ograniczony zawiera podcigg zbiezny.

Twierdzenie 3.5 (i) Kazdy cigg niemalejgcy i ograniczony z gory jest zbieiny.

(i) Kazdy cigg nierosnocy i ograniczony z dolu jest zbiezny.
Whniosek 3.2 Kaidy cigg monotoniczny jest zbieiny wtedy i tylko wtedy, gdy jest ograniczony.
Definicja 3.2 Mdwimy, ze cigg (an) jest ciggiem Cauchy’ego wtedy i tylko wtedy, gdy spelnia warunek
Ve>03neNNam kzn [am — ak| < € (3:2)
Twierdzenie 3.6 (Cauchy’ego) Ciag jest zbieiny wtedy i tylko witedy, gdy jest ciggiem Cauchy’ego.

Twierdzenie 3.7 Cligg ((1 + %)n) jest zbiezny. Jego granice oznaczamy e.

3.2 Zadania

Zadanie 3.1 Udowodnié, zZe jezeli cigg (a,) jest zbiezny, to zbieiny jest ciag (|an|) oraz zachodzi lim |a,| = | lim a,
n—oo — 00

Zadanie 3.2 Udowodni¢ 3.5 (ii).

Zadanie 3.3 Udowodnié jezeli cigg jest niemalejgcy (odpowiednio) nierosngeym i ogranicznym z gory (dolu), to jego granica

jest nie mniejsza (nie wieksza) niz dowolny jego wyraz.

Zadanie 3.4 Udowodnic, ze jezeli p > 0, to cigg (/p) ma granicg réwng 1.
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Zadanie 3.5 Udowodnié, ze cigg ({/n) ma granice réwng 1.

Zadanie 3.6 Udowodnié, ze jezeli [p| <1 to lim p™ = 0.
n—oo

n

Zadanie 3.7 (Lemat Teopliza) Niech (a,) bedzie ciggiem liczb nieujemnych. Niech by, def > ay oraz b, > 0 dla wszystkich
k=1

naturalnych n i cigg (by) bedzie rosnacy i rozbieiny do +oo. Jezeli cigg (xy,) jest ciggiem liczbowym zbieinym takim, ze

n
lim z,, =z, to zbiezny jest ciqgg bi > apxy | oraz
" k=1

n—oo

n

1
lim — axTp = 3.3
n— oo bn kZ:1 ktk ( )
Zadanie 3.8 (Twierdzenie o granicy $rednich arytmetycznych) Niech cigg (ay) bedzie zbieiny w szerszym sensie.

Jezeli lim a, =g, to lim % =g.

n—oo n—oo

Uwaga 3.1 Zauwazyé, Ze jest to szczegdlny przypadek lematu Teopliza. Przeprowadzi¢ réwniez dowdd nie korzystajoc z

lematu Teopliza.

Zadanie 3.9 (Twierdzenie o granicy $rednich geometrycznych) Niech cigg (ay) bedzie ciggiem liczb dodatnich i

zbieznym w szerszym sensie. Jezeli lim a, =g, to lim Yai;-... - a, =g.
n—oo

n—oo

Zadanie 3.10 Niech cigg (an41 — an) bedzie zbiezny. JeZeli lim (ani1 —an) =g, to lim 2= = g.
n—oo n—oo

Uwaga 3.2 Skorzystaé z twierdzenia o $redniej arytmetycznej.

An+41

Zadanie 3.11 Niech cigg (a,) bedzie ciggiem liczb dodatnich. Niech ponadto cigg (T) bedzie ciggiem zbieznym. Jezeli
lim a:% =g, to lim a, =g.

n—oo n—oo
Uwaga 3.3 Skorzystaé z twierdzenia o $redniej geometrycznej.

Zadanie 3.12 (Twierdzenie Stolza) Niech cigg (ay,) bedzie ciggiem rosngcym rozbieznym do nieskoniczonosci. Jezeli cigg

bn—bn_1 by

bu=buz1 ) Sest sbiein e ¢ i n—on=l ) — g to li In ) =
j y w szerszym sensie i lim { Zo=n=" ) =g, fo lim (g= ) =g.

p—n_1 s 00

Uwaga 3.4 Wykorzystaé lemat Teopliza. Przeprowadzi¢ réowniez dowod nie korzystajgc z lematu Teopliza.
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Wyktad 4

2002.10.28 / 3h

4.1 Rozszerzony zbior liczb rzeczywistych
Okreslimy rozszerzony zbiér liczb rzeczywistych tzn liczby rzeczywiste z plus i minus nieskoniczonosciami.

Definicja 4.1

RYRU{—o0} U {+o0} (4.1)

Uwaga 4.1 Przyjmujemy konwencje
Voer —00 < aAa < 400 (4.2)

oraz dla obu symboli nieskoriczonych i dowolnej liczby rzeczywistej a okreslone sq nastepujgce dzialania

def

a+ (+00) = 40
a— (—o0) o (4.4)
1 der
< 4.

T (4.5)
+oo dlaa>0

a-(+00) {0 dlaa=0 (4.6)
—00 dlaa<0
—o00 dlaa>0

a-(—o0) EC dlaa=0 (4.7)

400 dlaa<0

Uwaga 4.2 Dla zbioru nieograniczonego z gory (dolu) bedziemy mowili i pisali, zZe kres gdrny (dolny) tego zbioru jest réwny
+o00 (—o0).

Uwaga 4.3 Nieskonczono$é pozwalajg okresli¢ kres dolny i gorny zbioru pustego, a mianowicie

inf) = +oo Asuph = —c0 (4.8)

4.2 Ciagi rozbiezne do nieskonczonosci
Definicja 4.2 Mdwimy, ze cigg (an) jest rozbieiny do +oo (plus nieskonczonosci)
v7'€RE|n€NvNBk>nan >r (49)

Piszemy wtedy lim a,, = +oo.
n—oo

Mowimy, ze cigg (an) jest rozbieiny do —oo (minus nieskoriczonosci)
VreRIneNVNsk>nan < T (4.10)

Piszemy wtedy lim a,, = —oc0

n—oo
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Definicja 4.3 Mowimy, ze cigg ma granice niewlasciwg wtedy i tylko wtedy, gdy jest rozbiezny do plus bgdZ minus nieskon-
czonosci.

Mowimy, Ze cigg jest zbiezny w szerszym sensie wtedy i tylko wtedy, gdy jest zbieiny bedZ ma granice niewlasciwg.
Uwaga 4.4 Istniejg ciggi, ktore nie sq zbiezne w szerszym sensie. Mogg byé zarowno ograniczone jak i nieograniczone.

Przyktad 4.1 (i) Cigg, ktérego wyrazy sq okreslony wzorem a,, = (—1)™ jest ograniczony i nie jest zbiezny ani rozbiezny do
nieskorczonosci.
(i) Ciag, ktorego wyrazy sq okreslony wzorem a, = (—1)"n jest nieograniczony i nie jest rozbiezny do plus badZ minus

nieskoriczonosci.

Twierdzenie 4.1 Kazdy cigg rozbieiny do +0o (—o0) jest niegoraniczony z gory (z dolu).
Twierdzenie 4.2 (igg niemalejgcy nieograniczony z gory jest rozbiezny do +oco

Uwaga 4.5 Kazdy cigg rozbieiny do +oo jest nieograniczony z dotu, ale nie musi byé niemalejgcy.!
2

Twierdzenie 4.3 Cigg malejgcy nieograniczony z dolu jest rozbieiny do —oo.

Twierdzenie 4.4 Jezeli cigg (ay,) ma granice nieskoriczong, to cigg bedacy jego odwrotnosciq jest zbiezny i ma granice réwna

zero.
Uwaga 4.6 Twierdzenie odwrotne nie jest prawdziwe, o czym przekonuje ponizszy przyklad.

Przyktad 4.2 Niech (a,,) bedzie ciggiem, ktérego wyrazy okreslone sq nastepujaco

anNan = (411)

(=1)rn

4.3 Granica goérna i dolna ciggu.

Definicja 4.4 Dany jest cigg (an,)-
Granica gérna ciggu (oznaczamy jg limsup) jest to liczba rzeczywista bgdz nieskoriczono$é (plus badZ minus) w przypadku
ciggu nieograniczonego okreslona réwnoscig
limsup a,, = inf (sup ag) = lim (sup ag) (4.12)
n—oo neN k>n =00 k>n
Granica dolna ciggu (oznaczamy jg liminf) jest to liczba rzeczywista badz nieskonczono$é (plus bedz minus) w przypadku
ctagu nieograniczonego okreslona réownoscig

liminf a,, = sup(inf ax) = lim (inf ay) (4.13)

n—oo neN k=2n n—oo k>n

Uwaga 4.7 Poniewaz cigg (gn) okreslony wzorem g, = sup {ax} jest nierosngcym, to jesli jest ograniczony z dolu, to jest
>n

2bieiny’, a jezeli nie jest ograniczony z dolu to jest rozbieiny do —oo.
Podobnie cigg (d,) okreslony wzorem d,, = ér>1f {ar} jest niemalejqcy, to jesli jest ograniczony z gory, to jest zbieiny®, a
>n

jezeli mie jest ograniczony z gory to jest rozbieiny do +oc.

Przyktad 4.3 Niech a,, = (—1)". Wowczas limsupa, = 1 oraz liminf a,, = —1.

n—oo n—0oo

Przyktad 4.4 Niech a,, = n(=D" . Wéwezas lim sup a, = +oo oraz liminf a,, = 0.

n— oo n—oo
laq =2,a2 =1oraz ap, =ndlan > 3.
2Podobna fakt jest prawdziwy jak uwadze 4.5
3Przyjmujemy konwencje, ze jezeli g, = +oo dla dowolnego naturalnego n, to ciag jest ograniczony z dotu i ciagg ma granice réwna plus
nieskonczono$é.
4Przyjmujemy konwencje, ze jezeli d, = —oo dla dowolnego naturalnego n, to ciag jest ograniczony z géry i ciagg ma granice réwng minus
nieskonczonosé.
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Twierdzenie 4.5 Niech (a,) bedzie ciggiem. Wowczas

lim sup a,, = sup {g : J(ny)an, Jest podciggiem zbieinym w szerszym sensie N klim Oy, = g} (4.14)
—00

n—oo

Ponadto kres jest osiggalny w zbiorze tzn. istnieje podcigg (an,) zbieiny w szerszym sensie taki, ze limsup a, = klim n,,
n— 00 — 0

liminf a,, = inf {g : J(ny)@n, Jest podciggiem zbieznym w szerszym sensie A klim On,, = g} (4.15)
n—oo — 00

Ponadto kres jest osiggalny w zbiorze tzn. istnieje podcigg (an, ) zbiezny w szerszym sensie taki, ze liminf a, = klim O,
n—oo — 00

Uwaga 4.8 Granica gdérna (dolna) jest granicg podciggu zbieinego w szerszym sensie danego ciggu i jest to najwicksza
(najmniejsza) z granic zbieznych w szerszym sensie podciggdw danego ciggu.

Whiosek 4.1 Jezeli dla ciggu (ay) zachodzi limsupa, = liminfa,, to cigg jest zbieiny w szerszym sensie i lim a, =
n—00 n— o0 n—00

liminf a,, = lim sup a,,
n—oo n— oo

Whiosek 4.2 Jezeli cigg (ay,) jest zbiezny w szerszym sensie, to limsup a,, = liminf a,,.

n—oo n—oo

Whniosek 4.3 Cligg ograniczony jest zbiezny wtedy i tylko wtedy, gdy granica gorna jest réwna granicy dolnej.

Twierdzenie 4.6 Niech ciggi (an) i (by) bedg dowolne. Wéwczas

limsup(—a,) = — liminf a, (4.16)
lim inf a,, < limsup a,,. (4.17)

4.4 Szeregi liczbowe

Definicja 4.5 Niech (a,,) bedzie ciggiem liczbowym. Ciggiem sum czeSciowych nazywamy cigg (Sy), ktdrego wyrazy okreslone

§q wzorem

Sn=>_a (4.18)
k=1

Definicja 4.6 Niech (a,) bedzie dowolnym ciggiem, zas (S,) bedzie ciggiem jego sum czesSciowych. Szeregiem liczbowym

oo
nazywamy pare uporzgdkowang ((an), (Sp)) i oznaczamy go > ap
n=1

oo
Definicja 4.7 Mdwimy, ze szereg >, a, jest zbiezny wtedy i tylko wtedy, gdy jego cigg sum czeSciowych jest zbiezny.
n=1

Sumq szerequ nazywamy granice sum czgsciowych tego szeregu.
Uwaga 4.9 W literaturze sume szeregu i szereg zwykle oznacza sie tak samo.

Przyktad 4.5 Dla szeregu geometrycznego a, = aq™ mamy

= dla g <1ANa€eR
ia _ (+00) -sign(a) dlag>1ANa€eR (4.19)
= nie istnieje dlag< —-1Na#0

0 dlag<—-1ANa=0

oo
Definicja 4.8 Dany jest szereg Y an. n - tq resztq szeregu nazywamy wielko$é (szereg)
n=1

rh= Y a (4.20)

k=n-+1

o0
Twierdzenie 4.7 Jezeli szereg > a, jest zbiezny, to cigg n - tych reszt jest zbieiny do zera.
n=1

[e.e]
Twierdzenie 4.8 (Warunek konieczny zbieznosci szeregu.) Jezeli szereg > a, jest zbiezny, to lim a, =0

n—1 n— 00
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4.5 Zadania

Zadanie 4.1 Udowodnié, Ze jezeli ciag (a,) jest zbiezny i ma granice réwng zero oraz spelnia jeden z warunkéw

InenViznar >0 (4.21)
FnenViznar <0, (4.22)

to cigg bedgcy modutem jego odwrotnodciq jest rozbieiny do plus nieskonczonosci
Zadanie 4.2 Udowodnic¢ twierdzenie 4.4 dla ciggow rozbieznych do —oo.

Zadanie 4.3 Niech ciggi (ay,) i (by) bedg dowolne. Udowodnié zaleznosci

lim sup(a,, + b,) < limsup a,, + limsup b, (4.23)
Vnenan < b, = liminf < liminf b,,, (4.24)
n—0oo n—oo

gdzie nierdwno$é (4.23) okreslona jest dla takich ciggéw, dla ktérych lewa strona nie jest postaci co — 0.
Zadanie 4.4 Udowodnié, Ze istniejq takie ciggi, Ze w (4.23) nieréwno$é jest ostra.

Zadanie 4.5 Udowodnié, Ze dla dowolnego ciggu (ay) liczb dodatnich prawdziwe sq nieréwnosci

.. 2 0p41 An+1
lim inf -+
n—oo

< liminf /a, < limsup /a, < limsup
n—oo

an n—o0 n—oo a’ﬂ

(4.25)

Zadanie 4.6 Udowodnié, ze jezeli cigg (ay,) jest rozbiezny do +oo oraz cigg (by,) jest ograniczony z dolu, to cigg (a, + by)
jest rozbiezny do +o0.

Zadanie 4.7 Udowodnié, ze jezeli cigg (ay) jest rozbiezny do —oo oraz cigg (by,) jest ograniczony z gory, to cigg (a, + by)
jest rozbiezny do —oo.

Zadanie 4.8 Udowodnié, ze jezeli cigg (ay) jest rozbieiny do +oo oraz cigg (bn) od pewnego miejsca jest dodatni, to cigg

(an - by) jest rozbieiny do +o00.

Zadanie 4.9 Udowodnié, ze jezeli cigg (an) jest rozbieiny do +oo oraz cigg (by,) od pewnego miejsca jest ujemny, to cigg
(an - by) jest rozbieiny do —oo.

Zadanie 4.10 Udowodnié, ze jezeli cigg (an) jest rozbiezny do +oo oraz cigg (by,) jest taki, ze od pewnego miejsca zachodzi
nieréwnos$é a, < by, to cigg (by) jest rozbiezny do +o0o.
Zadanie 4.11 Udowodnié, ze jesli cigg (a,) jest zbiezny i lim a, = 0, a cigg (b,) jest ograniczony, to cigg (an, - by) jest

.. . . . n—0o0
zbiezny i ma granice rowng zero.

Zadanie 4.12 (i) Niech lim a, -b, =0 Czy mozna sted wnioskowaé, ze lim a, =0 lub lim b, =07%
n—0o0 n—oo n—oo
(ii) Ciggi ay, i b, sqg rozbiezne. Co mozna powiedzieé o zbieznosci sumy, réznicy, iloczynu i ilorazu tych ciggéw?
(iii) Ciag anjest zbieiny, a cigg b, rozbiezny. Co mozna powiedzieé o zbieznosci sumy, réznicy, iloczynu i ilorazu tych

ciggow?
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Wyktad 5

2002.11.04 / 3h

5.1 Zbieznos¢ szeregow liczbowych

Twierdzenie 5.1 (Kryterium Cauchy’ego.)
o0
Szereg > a, jest zbiezny wtedy i tylko wtedy, gdy
n=1

n

S

l=m

Ve>0INak NS nEm>k <e (5.1)

Uwaga 5.1 Warunek z kryterium Cauchy’ego mozna napisaé w innej postaci

m

Z Ak+1

=0

Ve>0IN3k VNom <e€ (5.2)

Twierdzenie 5.2 (Dziatania na szeregach zbieznych.)

[ee] [e.e]
Jezeli szeregi > an i Y. by sq zbiezny, to

n=1 n=1

o0
(i) zbieiny jest szereg > (an + by) oraz

n=1

K

(an ) = (f; ) + (f;b) 59

n=1

Il
-

n

o0
(i) zbiezny jest szereqg > (an — by) oraz
n=1

> (an —by) = (Z an> - (Z bn) (5.4)

o0
(iii) dla dowolnej liczby rzeczywistej ¢ zbieiny jest szereg >, (¢ ap) oraz
n=1
oo o0
Z(c cap)=c- <Z an> . (5.5)
n=1 n=1
o0
W szczegdlnosci zbiezny jest szereg > (—ayn) oraz
n=1

D (—an) = - <Z an> : (5.6)

Definicja 5.1 Szereg liczbowy nazuwamy ograniczonym wtedy i tylko wtedy, gdy jego cigg sum czeSciowych jest ograniczony.

Twierdzenie 5.3 Kazdy szereg zbieiny jest ograniczony.
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(o ]
Definicja 5.2 Mdwimy, zZe szereg > a, jest nieujemny (dodatni) wtedy i tylko wtedy, gdy dla dowolnej liczby naturalnej

n=1
an >0 (a, >0).
Twierdzenie 5.4 Szereg nieujemny jest zbieiny, badZ rozbiezny do +oo.
Twierdzenie 5.5 Szereg nieujemny jest zbiezny wtedy i tylko wtedy, gdy jest ograniczony.

Twierdzenie 5.6 (Kryterium poréwnawcze zbieznosci szeregu ((i) - kryterium Weierstrassa).)
Dane sq szeregi Z ap, @ Z by,

(i) Jesli spelmone 5@ warunkz

FeenVNsnzk|an| < bn, (5.7)
Z by, - zbieiny, (5.8)
to szereg io: an jest zbiezny
(i) J&?ilspeinione sq warunki
FrenNonzk0 < an < by, (5.9)
Z ap,- Tozbiezny, (5.10)
n=1

o0
to szereg > by, jest rozbiezny.
n=1

o0 o0
Definicja 5.3 Szereg > a, nazywamy bezwzglednie zbieznym wtedy i tylko wtedy, gdy szereg > |an| jest zbiezny.
n=1 n=1

Whiosek 5.1 Kaidy szereg bezwglednie zbieiny jest zbiezny.

Twierdzenie 5.7 (Kryterium zgeszczania Cauchy’ego.)
o0
Niech ciqg (ay,) bedzie ciggiem nierosngeym i nieujemnym. Wdowczas szereg Y. an jest zbieiny wtedy i tylko wtedy, gdy

n=1

o0
Z 2k agr jest zbieiny (5.11)
k=0

Whniosek 5.2 Szereg Z —5 Jjest zbiezny dla p > 1 1 rozbiezny dla p < 1.

Whniosek 5.3 (Udowodnié.) Szereg Z jest zbiezny dla p > 1 i rozbieiny dla p <

n lnp n

Twierdzenie 5.8 (Kryterium Cauchy’ego II.)
o0
Dany jest szereg Y. ay. Niech o = limsup {/|a,|. wéwczas, jesli

n=1 n—oo

o0
(i) a < 1, to szereg > ay jest zbieiny

n=1

[e.e]
(i) o > 1, to szereg > a, jest rozbieiny

n=1

o0
(iii) o = 1, to szereg > a, moze byé zbiezny lub rozbiezny (nie rozstrzyga)
n=1

Przyktad 5.1 Dla szeregow

S\H

> Z % (5.12)

kryterium Cauchy’ego nie rozstrzyga ich zbieznosci.
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Twierdzenie 5.9 (Kryterium d’Alemberta.)

o0
Dany jest szereg Y a,. Wowczas, jesli
=1
" (e ]
aZiIl <1, to szereg Y an jest zbieiny

n=1

(i) lim sup
(4i) lim inf

n—oo

o0
> 1, to szereg > a, jest rozbieiny

An+41
An
n=1

Przyktad 5.2 Dany jest cigg (ay) okreslony nastepujgco

1
def | 3% dlan=2k—-1
n = 5.13
¢ { L dlan =2k (5.13)
Wowczas
.. 2 Qpg1 . 2\" . Ani1 . 3\"
lim inf =lim (=) =0 A limsup =lim (-] =40 (5.14)
n—oo  QAyp n—oo \ 3 n—o0 Ay n—oo \ 2
1 1 2
liminf {/a, = lim * = ? A limsup {/a, = lim * on = g (5.15)

Twierdzenie 5.10 Kryterium Cauchy’ego jest mocniejsze od kryterium d’Alemberta. (Jesli kryterium Cauchy’ego nie roz-

strzyga, to mie rozstrzyga réwniez kryterium d’Alemberta).

Twierdzenie 5.11 (Kryterium Kummera.)

o0
Szereg dodatni Y, a, jest zbiezny wtedy i tylko wtedy, gdy istnieje cigg liczb dodatnich takich, ze

n=1

lim (bn n —bnﬂ) >0 (5.16)

n—co \ " pt1

Whiosek 5.4 (Kryterium Raabego.)

Jesli szereg dodatni Y ay spelnia warunek
n=1

lim n< In_ 1) >1, (5.17)

n—oo Ayt

to jest zbiezny.

5.2 Zadania

Zadanie 5.1 Udowodnié, Ze
1+Zlm :nlLrI;O (1+n) (5.18)

Zadanie 5.2 Podac przyklad szeregu zbieinego o wyrazach dodatnich, dla ktdrego cigg (a—:l) nie jest zbieiny.

a

oo
Zadanie 5.3 Niech szereg > a, bedzie o wyrazach nieujemnych. Udowodnié, Ze z jego zbieznosci wynika zbiezno$é szeregu
n=1

Zadanie 5.4 Niech (ay,) bedzie ciggiem liczb dodatnich, za$ (sy,) bedzie ciggiem jego sum cze$ciowych. Niech ponadto szereg
o0

> ayp bedzie rozbiezny.

n=1

(€273

an+1

o0
(i) Udowodnié, zZe szereg jest rozbiezny.
n=1

(i) Udowodnié, ze
SN

AN+1 + + AN +k >
e = -
SN+1 SN+E SN+E
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o]
i wywnioskowad stqd, Ze szereg > ‘;—n jest rozbiezny.

n=1
(i4i) Udowodnié, ze

1 1
COSER
Sh Sn—1 Sn
o0
1 wywnioskowac stqd, Ze szereg S jest zbiezny.
n=1 "
oo o0
Zadanie 5.5 Niech (ay,) bedzie ciggiem liczb dodatnich, za$ szereg > ay bedzie zbieiny. Polézmy rp, = > am.
n=1 m=n

(i) Udowodnié, zZe dla m < n
am, an Tn
- .

o0
i wywnioskowaé stqd, zZe szereg )y = jest rozbiezny.

=
(i) Udowodnié, Ze
an

VTn
an

o0
i wywnioskowad stqd, Ze szereg > = jest zbiezny.
n=1 n

<2 (Vi — )

oo o0

Zadanie 5.6 Niech bedq dane dwa szeregi o wyrazach niewjemnych Y an @ Y. by. Zaldzmy, Ze cigg (Z—") jest zbieiny w
n=1 n=1 "

szerszym sensie oraz

o0 o0
Wéwezas jesli K < +00, to ze zbieinosci szerequ >, by, wynika zbieznosé szeregu Y, an, a gdy K > 0, to rozbieznosci szeregu
n=1 n=1

(o] [ee]
> an wynika rozbieino$é szeregu Yy by,.
n=1 n=1

Zadanie 5.7 Korzystajgc z charakteryzacji - definicji liczby e przez szereg udowodnié, Ze jest to liczba niewymierna.

. .. e N a .
o7 an pocigga zbiezno$é szerequ Y- ~ 0 ile a, > 0.

Zadanie 5.8 Udowodnié, ze zbieznos$é szerequ > el

o0 b2

o1 b2 sq zbiezne, to szereqg > o~ | anb, jest zbiezny, an,b, > 0 dla

Zadanie 5.9 Wykazaé, ze jesli szeregi Y ooy a2 i >
dowolnych n € N.
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Wyklad 6

2002.11.11 — Dzien wolny
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Wyklad 7

2002.11.18 / 3h

7.1 Szeregi zbiezne (szeregi naprzemienne i warunkowo zbiezne; iloczyn

Cauchy’ego)

Lemat 7.1 (Abela o sumowaniu czesciowym.)

Dane sq ciggi (ay,) i (b,). Niech A, = > ap oraz A_y = 0. Wéwezas dla dowolnych p,q takich, ze 1 < p < q zachodzi

k=0
q q—1
> arby = Agbg — Ap_1by + Y Ag(br — brta)
k=p k=p

n

Twierdzenie 7.1 (Kryterium Abela - Dirichleta.) Dane sq ciggi (a,) i (by). Niech A, = Y ay. Jezeli
k=1
(i) cigg (A,) jest ograniczony

(i) cigg (by) jest nierosngcy
(ii) lim b, =0, to
n—oo
o0
szereg > apby, jest zbieiny.
n=1
Whniosek 7.1 Tuwierdzenie 7.1 pozostaje stuszne jesli warunek (ii) zastagpimy nastepujgcym

(i) ciag (b,) jest niemalejgcy.

Twierdzenie 7.2 (Kryterium Leibniza.)
Dany jest cigg (a,) Jezeli spelnia on warunki
(i) ciag (an) jest monotoniczny

(i) lim a, =0, to
n—oo

(o)
szereg Y (—1)"a, jest zbieiny.

n=1

Definicja 7.1 Szereg postaci
o0
> (~1)"an,
n=1

gdzie wyrazy ciggu (a,) magje stale jednakowy znak nazywamy szeregiem naprzemiennym.

(7.1)

o0 o0
Definicja 7.2 Moéwimy, ze szereg > a, jest warunkowo zbieiny wtedy i tylko wtedy, gdy szereg > |an| jest rozbieiny i
n=1

n=1
o0
szereg Y. an jest zbieiny.

n=1

.S n
Przyktad 7.1 Szereg 3 % jest warunkowo zbieiny.
n=1
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o0
Twierdzenie 7.3 (Twierdzenie Riemanna) Niech szereg >, a, bedzie zbieiny warunkowo i niech —oo < a < f < +00
n=1
bedg dane. Wéwczas istnieje taka permutacjal zbioru liczb naturalnych o (dowolne przestawienie wyrazéw ciggu tworzgcego
o0

szereg), Ze szereg ) Aq(n) 0 sumach czesciowych S, ma wlasnoscé

n=1

liminf S,, = a AlimsupS,, = (7.3)

n— 00 n—oo

oo o0 o0

Definicja 7.3 Illoczynem Cauchy’ego szeregdw > an i Y. b, nazywamy taki szereg > ¢, wyrazy ktdrego okreSlone sq
n=0 n=0 n=0

nastepujgco

Cn déf Z akbn—k (74)
k=0

Twierdzenie 7.4 (Twierdzenie Cauchy’ego)
Jezeli

o0 o0
(i) szereg > ay jest bezwzglednie zbiezny i Y an, = A

n_O n=0

(i) szereg Z by, jest zbieiny i Z b, =B

n=0

o0
WOWCZAS SZereq Z cn bedgey iloczynem Cauchy’ego danych szeregdw jest zbieiny i > ¢, = AB.
n=0 n=0

Zalozenie, ze jeden z szeregdéw jest bezwzglednie zbiezny jest konieczne.

nz\/n—k+1)(k+1)

1 zachodzi nastepujgce oszacowanie
n
2 2n+1
el > _2(n+1)

k:0n+2 n+2

i nie spetnia warunku koniecznego zbieinosci szeregu.

Twierdzenie 7.5 (Abela (bez dowddu).) Jesli szeregi > an, > bn, >, ¢n sq zbieine do A, B,C i szereg > ¢y jest
n=1 n=1 n=1 n=1

iloczynem Cauchy’ego dwdch pozostalych, to AB=C.
Uzupelnienie

Stwierdzenie 7.1 Szereg nieujemny jest zbiezny wtedy i tylko wtedy, gdy jest bezwzglednie zbiezny.

7.2 Szeregi potegowe

Definicja 7.4 Niech dany bedzie cigg liczbowy (ay,) oraz liczba xg € R jest ustalone, zas x moze przyjmowadé dowolne wartosci

rzeczywiste. Szereg
0o
Z LE - {,C() (75)

nazywamy szeregiem potegowym, liczby a, nazywamy wspolczynnikamsi tego szeregu.

Uwaga 7.1 Szereg jest pewnym odwzorowaniem (funkcjg) okreslong nastepujgco

T Z apn(z — 20)" (7.6)

I Permutacjg zbioru nazywamy dowolna funkcje z tego zbioru w ten sam zbiér, ktéra jest réznowartoéciowa i "na”.
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Twierdzenie 7.6 (Cauchy’ego - Hadamarda)
[ee]
Niech dany bedzie szereg potegowy > apn(x — x9)™. Niech

n=1

dla o # 0

dla oo = 400 - (7.7)
oo dlaa=0

S o=

a = limsup ’{/m/\Rz

n—oo
Wowczas szereg jest zbieiny dla {x € R: |z — x9| < R} i rozbiezny dla {x € R: |z — x| > R}.

Uwaga 7.2 Liczbe R wystepujgcg w twierdzeniu Cauchy’ego - Hadamarda nazywamy promieniem zbieznosci szeregu pote-
gowego.

7.3 Zadania

Zadanie 7.1 Dokoriczyé dowdd twierdzenia Riemanna 7.3

Zadanie 7.2 Udowodnic¢, ze warto$¢ bezwzgledna sumy szeregu bezwzglednie zbieznego jest nie wieksza niz suma szeregu
warto$ci bezwzglednych.

32



Wyklad 8

2002.11.25 / 3h

8.1 Szeregi potegowe c.d.

S} n
Przyktad 8.1 Szereg Y %x" ma promien zbieznosci rowny 1 oraz jest zbiezny dla x = —1 i rozbiezny dla x = 1.
n=1

Twierdzenie 8.1 Szereg potegowy jest bezwzglednie zbiezny w swoim kole zbieznosci tzn. w zbiorze {x € R : |x — xo| < R}

Whniosek 8.1 Jezeli oznaczymy przez Bdéf lim GZII (0 ile ten cigg jest zbieiny w szerszym sensie), to promieri zbieznosci
szeregu potegoweqo WyYraza Sie wWzorem e
% dla 8 #0
R=S0 dlaf=+oco. (8.1)
400 dla =0

8.2 Elementy topologii

Uwaga 8.1 W zbiorze liczb rzeczywistych R wartosé bezwzgledna spelnia nastepujgce warunki (miedzy innymi)

Va.er|z| > 0 (8.2)
Vaoyerlt —y| =0z =y (8.3)
Vayer|r —yl = |y — 2| (8.4)
Vaoy,zerlz — 2| < |z —y[+ |y — 2| (8.5)

Mozemy wiec okreslié odwzorowaniem z dg : R x R — R U {0} wzorem
Vayerde (z,y) = |z —yl. (8.6)
Uwaga 8.2 7 algebry liniowej wiadomo, Ze dla dowolnej liczby zespolonej z okresla sie jej modul nastepujgco
I2] = v/ (R2)% + (S2)2, (8.7)

gdzie Rz jest czescig rzeczywistq liczby zespolonej z, zas Sz jest czescig urojong tej liczby. Spelnia on wéwczas nastepujgce

warunki (miedzy innymi)

Vecclz| >0 (8-8)
Vayeclz —yl =0 2=y (8.9)
Vayecle =yl =y — | (8.10)
Vay,zecle — 2| < |z -yl + |y — 2| (8.11)

Mozemy wiec okreslié¢ odwzorowaniem z dg ¢ : C x C — Ry U {0} wzorem
Vayecdec(z,y) = |z —y. (8.12)
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Ogolniej mozemy zdefiniowaé przestrzen metryczna nastepujaco:

Definicja 8.1 Niech X bedzie zbiorem niepustym, za$ d odwzorowaniem z X x X — Ry U {0}. Pare (X,d) nazywamy
przestrzeniq metryczng wtedy i tylko wtedy, gdy d spelnia nastepujgce warunki

Veyexd(z,y) =0 x=y (8.13)
Voyexd(@,y) = d(y,z) (8.14)
Vayzexd(@,z) < d(z,y) +d(y, 2). (8.15)

Elementy zbioru X nazywamy punktami przestrzeni.
Definicja 8.2 Jedonowymiarowq przestrzeniq euklidesowqg E' nazywamy przestrzen przestrzen
E' YR, dg) = (R, ]-]) (8.16)
Definicja 8.3 Jednowymiarowq przestrzenig zespolona C' nazywamy przestrzen przestrzer
' (C.dec) = (T, ) (8.17)
Uwaga 8.3 Jezeli rozpatrujemy rozszerzony zbidr liczb rzeczywistych R, to mozina okresliéc w nim metryke nastepujgco:
V. yeidz(®,y) def |arctg x — arctg yl, (8.18)

s _m1

gdzie przyjmujemy konwencje arctg(4-00) = 5 oraz arctg(—oo) = —%'. Kulami otwartymi sq wtedy albo zwykle kule, albo

péiproste, albo cala prosta rozszerzona.
Definicja 8.4 Jednowymiarowq rozszerzong przestrzenig euklidesowq nazywamy przestrzen metryczng
ETY(R, dy) (8.19)
Niech (X,d) bedzie przestrzenia metryczng (dla ulatwienia mozna caly czas rozwazaé¢ wylacznie £1 i Eh).
Definicja 8.5 Kulg otwartg osrodku w punkcie xg o dodatnim promieniu r nazywamy zbior okreslony réwnoscig
B(zg,r) e {r e X :d(z,x0) <r} (8.20)
Kulg domknietq osSrodku w punkcie xo o dodatnim promieniu r nazywamy zbior okreslony réwnoscig
Blao, ) ¥ {2 € X : d(z,z0) <7} (8.21)
Uwaga 8.4 W przypadku przestrzeni euklidesowej E' jest to odcinek o §rodku w xq i dlugosci 2r.
Definicja 8.6 Zbior A C X w przestrzeni metrycznej nazywamy otwartym w (X,d) wtedy i tylko wtedy, gdy
VpeadrsoB(p,r) C A (8.22)

Definicja 8.7 Zbior A nazywamy domknietym w (X,d) wtedy i tylko wtedy, gdy jego dopelnienie jest zbiorem otwartym w
(X,d).

Whiosek 8.2 Zbiory ) oraz X sq otwarte w (X,d).
Wniosek 8.3 Zbiory § oraz X sq domknicte w (X,d).
Whiosek 8.4 Kula otwarta w przestrzeni metrycznej w (X,d) jest zbiorem otwartym w (X,d).

Twierdzenie 8.2 Kula domknieta w przestrzeni metrycznej jest zbiorem domknietym w (X,d).

IFunkcja arctg (arcus tangens) jest to funkcja odwrotna do funkcji tanges na przedziale | — 55l
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Twierdzenie 8.3 (i) Dla dowolnej rodziny {A; : i € 3} C 2% zbioréw otwartych w (X,d) 2biér |J A; jest otwarty w (X,d).
€T

(ii) Dla dowolnej skoriczonej rodziny {A; : 1 <i < n} C 2% zbioréw otwartych w (X,d) zbiér () A; jest otwarty w (X,d).
i=1

7=

Whiosek 8.5 (i) Dla dowolnej rodziny {A; : i € I} C 2% 2bioréw domknietych w (X,d) zbiér () A; jest domkniety w (X,d).
€T

(ii) Dla dowolnej skoriczonej rodziny {A; : 1 < i < n} C 2% zbioréw domknietych w (X,d) zbior |J A; jest domknigty w (X,d).
i=1

1=

Whniosek 8.6 Nastepujgce odcinki sq zbiorami otwartymi la,b] |] — oo, al, Ja, +o0] oraz ] — oo, +oo[=R.
Whiosek 8.7 Nastepujgce odcinki sq zbiorami domknietymi [a,b] || — 0o, a], [a,+o0] oraz | — 0o, +o00[= R.

Twierdzenie 8.4 Dia dowolnych dwdch réznych punktow p i q przestrzeni metrycznej (X,d) istniejg zbiory O, i O, otwarte
w (X,d) takie, Ze
PEONGEO,NO,NO; =0 (8.23)

Definicja 8.8 (i) Otoczeniem punktu p nazywamy dowolny podzbiér O, C X, dla ktérego istniejq kula otwarta B(p,r) taka,
ze B(p,r) C Op.

(i) Otoczeniem otwartym punktu p nazywamy dowolne otoczenie punktu p bedgce zbiorem otwartym w (X,d).

(#4i) Punkt p nazywamy punktem wewnetrznym zbioru A wtedy i tylko wtedy, gdy istnieje otoczenie otwarte tego punktu

O, zawarte w tym zbiorze.

Przyktad 8.2 Dla punkty 1 zbidr [1,2] nie jest otoczeniem, zbidr [0,2] jest otoczeniem, ale nie jest otoczeniem otwartym,

za$ 0, 2] jest otoczeniem otwartym.
Przyktad 8.3 Dla zbioru A = [1,2] punkty wewnetrzne, to punkty z odcinka otwartego |1,2[
Whiosek 8.8 Kazdy punkt zbioru otwartego w (X,d) jest punktem wewnetrznym.
Whniosek 8.9 Zbior jednopunktowy jest zbiorem domknietym w przestrzeni metryczne;.
Uwaga 8.5 Pojecie zbieznosci ciggu w R, granicy oraz ciggu Cauchy’ego mozna przenie$é na przestrzenie metryczne.
Definicja 8.9 Cligg (x,) punktéw przestrzeni metrycznej (X,d) jest zbiezny witedy i tylko wtedy, gdy
JeexVes0INenVns>nd(T, 7,) < € (8.24)
Zbiezny cigg (xy,) punktéw przestrzeni metrycznej (X,d) ma granice réwng x wtedy i tylko wtedy, gdy
VesoInenVnsnd(z,2n) < € (8.25)
Ciqg punktow (x,,) przestrzeni metrycznej (X,d) nazywamy ciggiem Cauchy’ego wtedy i tylko wtedy, gdy
Ves0INenYNsn,m> N Tm, Trm) < €. (8.26)

Definicja 8.10 Jezeli w przestrzeni metrycznej (X,d) kazdy cigg Cauchy’ego ma granice nalezgeg do X, to przestrzen me-
tryczng (X,d) nazywamy zupelng.

Twierdzenie 8.5 Jednowymiarowa przestrzen euklidesowa E' jest zupetna.

Twierdzenie 8.6 Zbidr A jest domknicty w (X,d) wtedy i tylko wtedy, gdy dla dowolnego zbieinego ciggu punktdw tego
zbioru jego granica nalezy do tego zbioru.

Definicja 8.11 Niech A bedzie podzbiorem przestrzeni metrycznej. Domknieciem zbioru A mazywamy najmniejszy zbior
domkniety w (X,d) zawierajgcy zbidr A. Oznaczmy go przez Cl A.

Whiosek 8.10 Domkniecie zbioru domknietego w (X,d) jest tym samym zbiorem.
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Definicja 8.12 (i) Punkt p nazywamy punktem skupienia zbioru A wtedy i tylko wtedy, gdy

Vrs0A N (B(p,m) \ {p}) #0 (8.27)

(i) Punkt p nazywamy punktem izolowanym zbioru A wtedy i tylko wtedy, gdy p nie jest punktem skupienia tego zbioru

tzn.
Fr>0AN (B(p, )\ {p}) =0 (8.28)

Uwaga 8.6 Warunek (8.27) mozna zapisaé nastepujgco
Vrs0Tzeap # x Ad(p,x) <r (8.29)
Uwaga 8.7 Warunek (8.29), a co za tym (8.27) mowi, Ze punkt p jest granicg ciggu punktdw z A réznych od p.

Przyktad 8.4 Dla zbioru A = {0} U[1,2] punkt 0 jest punktem izolowanym, zas$ dowolny punkt odcinak [1,2] jest punktem

skupienia.

Twierdzenie 8.7 Jezeli p jest punktem skupienia zbioru A, to dowolne otoczenie punktu p zawiera nieskoriczenie wiele

punktow ze zbioru A.

Whniosek 8.11 Zbior skonczony nie ma punktow skupienia.

8.3 Zadania

Zadanie 8.1 Udowodnic¢ twierdzenie 8.7.
Zadanie 8.2 Skonstruowaé ograniczony zbior liczb rzeczywistych posiadajgcy dokladnie trzy punkty skupienia.
Zadanie 8.3 Wyznaczyé wszystkie punkty skupienia zbioru liczb calkowitych i naturalnych w g

Zadanie 8.4 Niech (X,d) bedzie przestrzeniq metryczng. Udowodnié, ze

Vp,qrex |d(p, @) — d(g, )| < d(p,T) (8.30)
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Wyklad 9

2002.12.02 / 3h

9.1 Elementy topologii c.d.

Twierdzenie 9.1 Niech A bedzie podzbiorem przestrzeni metrycznej, za$ A bedzie zbiorem jego punktéw skupienia. Zbidr

przestrzeni metryczne (X,d) jest domkniety wtedy i tylko wtedy, gdy AC A.

Przyklad 9.1 Przestrzen metryczna (Q,dg), gdzie Vg yeqdo(x, ) def |x—y| nie jest zupelna, gdyz cigg rozwinied dziesietnych

liczby niewymiernej jest ciggiem Cauchy’ego, ale nie jest zbiezny w tej przestrzeni.
Twierdzenie 9.2 £ jest przestrzenia metrycang zupelng.

Uwaga 9.1 Ciggi zbiezne w L sq to ciggi rzeczywiste zbiezne w szerszym sensie (jak réwniez ciggi zbieine w szerszym sensie

zawierajgce skonczong ilo$é wyrazéw réwnych +o0o) oraz ciggi od pewnego miejsca réwne +oo lub —oo.

Whniosek 9.1 Podzbior domkniety przestrzeni metrycznej zupelnej jest przestrzeniqg zupelng.

9.2 Granica funkcji

Niech (X;,d;) beda przestrzeniami metrycznymi z topologiami 7; dla i=1,2 (badZ wylacznie przestrzeniami topologicznymi
(Xu'rz)) Niech T : X1 — XQ.

Definicja 9.1 (Otoczeniowa Cauchy’ego) Niech A C X oraz niech p bedzie punktem skupienia zbioru A. Bedziemy
mowili, Ze odwzorowanie T : A — Xo ma granice w punkcie p réwng q (q € Xso) wtedy i tylko wtedy, gdy

Ves035>0V0ea0 < di(p,z) <6 = da(q, T(x)) <& (9.1)
Zapisujemy wtedy lim T'(z) = q lub T(x) — q dla © — p.
T—p

Definicja 9.2 (Ciggowa Heinego) Niech A C X, oraz niech p bedzie punktem skupienia zbioru A. Bedziemy mdwili, ze
odwzorowanie T : A — Xy ma granice w punkcie p réwng q (q € Xo) witedy i tylko wtedy, gdy

Vpcavpy im pn =p= lim T(p,) = g. (9.2)

Uwaga 9.2 7 okreslenia punktu skupienia wynika, Ze punkt p nie musi naleze¢ do zbioru A. A jezZeli nawet nalezy, to nie

wynika weale, ze T'(p) = lim T'(x).
T—p

Uwaga 9.3 Tak zdefiniowane pojecie granicy zawiera w sobie definicje granic w nieskoriczonosci dla (Xo,ds) = EY, jak i
g )¢ g Y Je g J

granic nieskoriczonych dla (X1,d;) = £L,
Twierdzenie 9.3 Obie definicje granicy odwzorowania w punkcie sq réwnowazne.

Whniosek 9.2 Jezeli T ma granice w punkcie p, to tylko jedng.
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Uwaga 9.4 Funkcje f z X w jednowymiarowq przestrzen euklidesowq nazywamy funkcjq rzeczywistq.

Definicja 9.3 Niech f,g bedq funkcjami rzeczywistymi ze zbioru X, a dowolng liczbg rzeczywistq. Wowczas

h=f+g & Vaexh(s)=f(x)+g(x)
h=f-g & Veexh(z)=f(z) g(x) (9.4)
h=a-f & Yaexh(r)=a-f(z)

Uwaga 9.5 Z wiadomosci z algebry liniowej wynika wiec, zZe zbior funkcyi z dziataniami dodawania funkcji ¢ mnozenia funkcji

przez stalg rzeczywsita tworzy przestrzen wektorowa nad ciatem liczb rzeczywistych.

Lemat 9.1 Niech dany bedzie cigg punktéw (p,) przestrzeni metryczne (X,d) zbieiny. Niech ponadto lim p, = p oraz
n—oo

lim p, =q. Wtedy p=q

n—oo

Twierdzenie 9.4 Niech A bedzie podzbiorem przestrzeni metrycznej (X,d). Niech p bedzie punktem skupienia zbioru A, za$

f i g funkciami rzeczywistymi o dziedzinie A. Niech lim f(x) = A ¢ lim g(x) = B. Wéwczas
T—p T—p

lm(f+g)(z) = A+B (9.6)
lim(fg)(@) = AB (97)
o A
;{I})(g)(x) -~ B (9.8)
lim(af)(z) = ad (99)

Uwaga 9.6 Gdy £' = (X1,dy) = (Xa,dy) oraz p € R, to otrzymujemy definicje (warunek Cauchy’ego) granicy (skorczonej)
funkcji w punkcie. Funkcja f ma granice rowng q w punkcie p wtedy i tylko wtedy, gdy

Ves03550V0er0 < [p — 2| <6 = [f(2) —q| <e (9.10)

Gdy g = (X1,d1) oraz E' = (Xa,dg) oraz p = +00, to otrzymujemy definicje (warunek Cauchy’ego) granicy (skorczonej)

funkcji w nieskoriczonosci. Funkcja f ma granice rowng q w plus nieskoriczonosci wtedy i tylko wtedy, gdy
v5>03§evae]R5 < T = ‘f(x) - q‘ <e (911)
Analogicznie mozna otrzymadé granice nieskonczone w punkcie, jok i granice nieskoriczone w nieskonczonosci.

Dla funkcji rzeczywistych tzn. ze zbioru liczb rzeczywistych w zbior liczb rzeczywistych mozna zdefiniowaé granice jed-

nostronne.

Definicja 9.4 Niech funkcja f bedzie okreslona na odcinku |a,b[. Niech © bedzie dowolnym punktem takim, ze a < x < b.
Moéwimy, ze granicg prawostronng funkcji f jest liczba q wtedy i tylko wtedy, gdy

Ve»03550V0ea0 <z —p <d=|T(z) —q| <e (9.12)
Oznaczamy jg q = lirn+ f@) = f(z™).
t—x
Analogicznie mozna podaé definicje jednostronng nieskonczona

Definicja 9.5 Niech funkcja f bedzie okreslona na odcinku ]a,b[. Niech x bedzie dowolnym punktem takim, Ze a < x < b.

Mowimy, ze granicg prawostronng funkcji f jest plus nieskoriczonosé wtedy i tylko wtedy, gdy
Ves0Ts50Vaca0 <z —p<d=T(z) >¢ (9.13)

Piszemy wtedy lim+ f@) = f(z) = 4oo.

t—x
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9.3 Ciaglosé funkcji — podstawowe definicje

Definicja 9.6 Niech (X,d) bedzie przestrzeniqg metryczng. Topologiq przestrzeni (X, d) bedziemy nazywaé rodzine wszystkich
zbiordw otwartych w tej przestrzeni wyznnaczonych przez metryke d i oznaczamy ja 74 (jezeli nie bedzie to powodowoalo

nieporozumien to T ).
Uwaga 9.7 Jezeli (X1,dy) bedzie przestrzenig metryczng, to je topologie oznaczamy przez 1.
Niech (X;,d;) beda przestrzeniami metrycznymi z topologiami 7; dla i = 1,2. Niech T: X7 — Xo.
Definicja 9.7 (Otoczeniowa) Mdéwimy, ze odwzorowanie T jest ciggle wtedy i tylko wtedy, gdy
Vo,ern, T 1 (02) €T (9.14)

Niech p € X1. Mowimy, Ze odwzorowanie T jest ciggle w punkcie p wtedy i tylko wtedy, gdy dla dowolnego otoczenia Os
punktu T(p) zbiér T~1(Oy) jest otoczeniem punktu p.

Uwaga 9.8 Z definicji tej wynika, Ze aby odwzorowanie bylo ciggle w punkcie musi bycé okreslone w tym punkcie.

Whiosek 9.3 Odwzorowanie jest ciggle wtedy i tylko wtedy, gdy dla dowolnego zbioru domknictego w (Xo, o) jego przeciw-
obraz jest domkniety w (X1, 71)

Whniosek 9.4 Nastepujgce warunki sq rownowazne:
(i) T jest ciggle w punkcie p

(4) ¥ otoczenia OT(p)Hotoczeme OPT(O:U) C Orp)
(iii) (Warunek Cauchy’ego)

Ves03s>0Veex, di(p,z) <6 = dao(T(p), T(2)) <e (9.15)
(iv) (Warunek Heinego)
Yipycx, im p, =p= lim T(p,) =T(p) (9.16)

Uwaga 9.9 Warunek (9.15) moze byé zapisany
v€>035>0vz€X1x € B(pv 6) = T(ZL') € B(T(p),&) (917)

albo
Vex035>0Veex, T(B(p,6)) € B(T'(p),e). (9.18)

Whniosek 9.5 Odwzorowanie jest ciggle wtedy i tylko wtedy, gdy jest ciggle w kazdym punkcie.

9.4 Zadania

Zadanie 9.1 Sformulowaé wylacznie przy uzyciu wartosci bezwzglednej wszystki definicje granic wlasciwych i niewlasciwych
w punkcie i nieskonczono$ciach.

Zadanie 9.2 Sformulowaé pozostale definicje granic jednostronnych.
Zadanie 9.3 Niech X,Y bedg niepustymi zbiorami oraz T: X — Y. Niech ponadto A,B CY oraz C,D C X. Udowodnié, zZe

AcCB=T"'A4) cTYB) (9.19)
CcD=T(C) cT(D) (9.20)
CcT HT(C)) (9.21)
T(r-'(A)cA (9.22)
ACT(X)=T(T HA)=A (9.23)

Zadanie 9.4 Udowodni¢ réwnowaznosé warunkéw Heinego i Cauchy’ego cigglosci funkcji w punkcie.
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Wyktad 10

2002.12.09 / 3h

10.1 Ciaglosé funkcji — wltasnosci. Jednostajna ciggtosé

Uwaga 10.1 Jezeli A C X, oraz T: A — Xs, to analogicznie mozna mowié (oraz mozna byloby moéwié) o cigglosci takiego
odwzorowania na zbiorze A. Ale poniewaz dopelnienia zbioru A nie odgrywajg roli w definicji bedziemy, o ile to nie bedzie

konieczne, rozwazac odwzorowania z Xi.

Whniosek 10.1 Jezeli punkt p jest punktem izolowanym podzbioru A przestrzeni metrycznej (X,d), to odwzorowanie T: A —

X jest zawsze ciggle w tym punkcie.
Przyktad 10.1 Na podstawie wniosku 10.1 otrzymujemy, Ze kazdy ciqg rzeczywisty jest funkcja ciggle na N.

Uwaga 10.2 Jeszcze raz nalezy podkreslié, ze ciqglo$é jest zwigzana z metrykg przestrzeni (topologiq tej przestrzeni). Dla

tego samego zbioru, lecz innych metryk okreslonych w tym zbiorze, to samo odwzorowanie moze byé raz ciggle, a raz nieciggle.

Przykltad 10.2 Rozwazimy metryke dyskretng tzn, dla niepustego zbioru X okreslamy matryke nastepujgco

1 diax#y

da(z,y) = {0 daz—y (10.1)

Wtedy topologia tej przestrzeni metrycznej sktada sie dokladnie z dwdch zbioréw 0 i X. Rozwazmy metryke dyskretng w zbiorze
liczb rzeczywistych (przestrzen Ry) i jednowymiarowq przestrzer euklidesowq £. Wéwczas odwzorowanie identycznodciowe z

Ry w E' nie jest ciggle.
Whiosek 10.2 Odwzorowanie identycznosciowe z przestrzeni metryczng w nig samg jest ciggle.
Whniosek 10.3 Odwzorowanie stale jest ciggle, bez wzgledu na rodzaj metryk zadanych w dziedzinie i obrazie.

Twierdzenie 10.1 Niech A bedzie podzbiorem przestrzeni metrycznej (X1,d1), T odwzorowaniem z A w (Xa,ds) za$ p
punktem ze zbioru A bedgcym jednoczesnie punktem skupienia zbioru A. Wtedy T jest ciggle w p wtedy i tylko wtedy, gdy
(i) istnieje granica odwzorowania T w punkcie p,

(ii) granica odwzorowania T w punkcie p jest réwna warto$ci w tym punkcie.

Twierdzenie 10.2 ZloZenie odwzorowan cigglych jest odwzorowaniem cigglym tzn. Niech (X,dx),(Y,dy),(Z,dz) bedqg prze-
strzeniami metrycznymi, T: X — Y, S:Y — Z bedg ciggle. Wtedy S oT: X — Z jest ciggle.

Twierdzenie 10.3 Niech f i g bedg rzeczywistymi funkcjami cigglymi dziedzing ktdrych jest przestrzen metryczna (X,d).
Wowczas ciggle sq funkcje f +g, f-g, a- f oraz funkcja 5 o ile dla dowolnego punktu z z X zachodzi g(x) # 0.

Definicja 10.1 Niech A bedzie podzbiorem przestrzeni metrycznej (X1,dy), za8 T: A — Xs, gdzie (Xa,ds) jest przestrzenig

metryczng. Mowimy, zZe odwzorowanie T jest jednostajnie ciggle na zbiorze A wtedy i tylko wtedy, gdy

Ve03550Va yeadi(z,y) <0 = do(T(2), T(y)) < e (10.2)
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Uwaga 10.3 Jezeli (X1,d1) = (Xo,d2) = &Y, to warunek 10.2 ma postaé
VE>()E|5>()VI’7J€A|(E — y‘ < (S = |T(£E) — T(y)\ < € (103)

Uwaga 10.4 W definicji 10.1 mozna rozwazaé funkcje okreslong na catym X1 i mowié, ze odwzorowanie jest jednostajnie

ciggle na danym zbiorze.
Twierdzenie 10.4 Jezeli odwzorowanie T jest jednostajnie ciggle na zbiorze A, to jest ciggle na tym zbiorze.

Przyklad 10.3 Funkcja f(x) = 22 jest ciggla, ale nie jednostajnie ciggla na R.

10.2 Funkcje wypukle i wahanie funkcji w punkcie, a cigglosé
Bedziemy rozwazaé funkcje z przestrzeni metrycznej £' w £'. Niech P bedzie niezdegenerowanym!' przedzialem, f: P — R.

Definicja 10.2 Niech f:R — R bedzie funkcjq ograniczong i niech p € R. Wahaniem funkcji f w punkcie p nazywamy liczbe

§—0% \ zep—o,p+9]

W(f,p) L im ( sup  f(xr)—  inf f(:c)) (10.4)
z€[p—0,p+4]

Twierdzenie 10.5 Niech f: P — R bedzie funkcjqg ograniczong. Wiedy f jest ciggla w punkcie p wtedy i tylko wtedy, gdy
W(f,p) =0.

Definicja 10.3 Niech V bedzie przestrzenig wektorowg nad ciatem liczb rzeczywistych.?. Méwimy, Ze podzbiér A C V. jest
wypukly wtedy 1 tylko wtedy, gdy
ViyeAVa,ger,ujoye+ B =1=ar+ 8y € A (10.5)

Definicja 10.4 Funkcje f nazywamy wypukiq na przedziale P wtedy i tylko wtedy, gdy

VayePVaper ufoya+ 8 =1= flaz+ By) < af(x) + Bf(y) (10.6)
Funkcje f nazywamy wklestq na przedziale P wtedy i tylko wtedy, gdy —f jest wypukia.
Whniosek 10.4 Funkcja f jest wklesta na przedziale P wtedy i tylko wtedy, gdy

VeyePYa,ger,ufoya + 8 =1= f(ax + By) > af(x) + Bf(y) (10.7)

Twierdzenie 10.6 Funkcja wypukla na przedziale jest funkcjqg cigglq.

10.3 Ciaglos¢ i zwartosé
Niech (X, d) bedzie przestrzenia metryczna.

Definicja 10.5 Podzbidr A przestrzeni metrycznej (X,d) nazywamy (ciggowo) zwartym wtedy i tylko wtedy, gdy z kazdego

ciggu punktow z tego zbioru mozna wybrac podcigg zbiezny, ktorego granica nalezy do zbioru.
Twierdzenie 10.7 (Twierdzenie Bolzano - Weierstrassa.) Odcinek [a,b], gdzie a < b jest zwarty.

Twierdzenie 10.8 W przestrzeni euklidesowej E' nastepujgce warunki sq réwnowazne

A zwarty (10.8)
A domkniety i ograniczony (10.9)
Kazdy nieskoriczony podzbior A ma punkt skupienia (10.10)

1Znaczy to, ze jest niepusty i nieredukuje sie do punktu.
2Poréwnaj definicje z Algebry liniowej
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10.4 Zadania

Zadanie 10.1 Udowodnié¢ twierdzenie 10.6.

Zadanie 10.2 Dokonczy¢ dowdd twierdzenia 10.8.

Zadanie 10.3 Udowodnié, Ze funkcja f(x) = 22 jest jednostajnie ciggla na kadym odcinku skoriczonym (ograniczonym,).

Zadanie 10.4 Niech f bedzie jednostajnie cigglym odwzorowaniem przestrzeni metrycznej (X, dx) w przestrzen metryczng

(Y,dy). Pokazaé, ze dla dowolnego ciggu Cauchy’ego (x,) C X cigg (f(xy,)) jest ciggiem Cauchy’ego.

Zadanie 10.5 Udowodnié, ze zlozZenie funkcji jednostajnie cigglych jest funkcjq jednostajnie cigglq.

Zadanie 10.6 Wykazaé, Ze jezeli funkcja f : R — R jest jednostajnie ciggle w ', to istniejg takie liczby a,b € R, Ze
Vaer|f(2)] < alz| + b. (10.11)

Zadanie 10.7 Wykazaé, ze jesli P C R jest przedzialem, f : P — R funkcjq cigglq majgcq skonczone granice na koricach

przedziatu P, to jest jednostajnie ciggla na P.
Zadanie 10.8 Wykazaé, Ze kazda funkcja okresowa ciggla jest jednostajnie ciggla.

Zadanie 10.9 Udowodnié, ze iloczyn dwdich funkcji jednostajnie cigglych i ograniczonych na R jest funkcjq jednostajnie
ciaglq.
Udowodnié, ze warunek ograniczonosci obu funkcji jest istotny tzn. iz twierdzenie nie jest prawdziwe bez tego zaloZenia.

Rozpatrzyé przyklad funkeji f(x) = xsinz.
Zadanie 10.10 Udowodnié, ze zwarty podzbior przestrzent metrycznej jest domkniety ¢ ograniczony.

Zadanie 10.11 Udowodnié, ze dla dowolnego podzbioru A C R nastepujgce warunki sq¢ réwnowazne
(i) A jest wypukly
(ii) A jest przedzialem

Zadanie 10.12 Niech P bedzie niepustym przedzialem zawierajgcym co najmniej dwa punkty. Udowodnié, Ze nastepujgce

warunki s¢ réwnowazne

f jest wypukta na P (10.12)
VinenVay . anePVay,aner g0y O 0k = 1= fOanzy) <D agf(ar) (10.13)
k=1 k=1 k=1

To—T T—x
thz%,}epxl <xr <x9 = f(.’L‘) < 2 f(l‘l) + ! f(J?Q) (10.14)
To — I T2 —T1
le,m,zepwl <x< Z9 = f(l') — f(xl) < f(xQ) — f(x) (1015)
To — X xr — X

Uwaga 10.5 Nierowno$é 10.13 nazywamy nierownosciqg Jensena.
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Wyktad 11

2002.12.16 / 3h

11.1 Ciaglosé¢ i zwartosé — c.d.
Niech (X, d) bedzie przestrzenia metryczna, a 7 rodzina jej wszystkich zbioréw otwartych.
Definicja 11.1 Pokryciem zbioru A C X nazywamy rodzine zbioréw {A; : i € T} takg, ze

Ac A (11.1)

i€3J
Jezeli kazdy ze zbioru pokrycia jest zbirem otwartym w tej przestrzeni, to takie pokrycie nazywamy otwartym.

Twierdzenie 11.1 (Na ocene bardzo dobrg) Zbior E nazywamy zwartym wtedy i tylko wtedy, gdy z kazdego jego pokrycia

mozna wybrac¢ podpokrycie skonczone tzn.

Via.:ieay {Ai 11 € T} pokrycie zbioru A = 3, i, 3B C Ay U...UA; . (11.2)

veey

Przyklad 11.1 Zbiér R nie jest zwarty w jednowymiarowej przestrzeni euklidesowej £', gdyz dla pokrycia

1 3
,‘Rdéf{}n,rH— 1tneZ}uU {]n—i— §,n+ 5[: ne Z}
nie mozna wybraé podpokrycia skoriczonego (jednyne podpokrycie zawierajgce R jest nim samym).

Uwaga 11.1 Wykorzystywalismy w przykladzie 11.1 pojecie réwnoliczno$ci zbiorow. Zbior liczb calkowitych jest rownoliczny

(ma takq sama ilosé elementow) ze zbiorem liczb naturalnych. Co wiecej podobny fakt zachodzi dla liczb wymiernych.

Twierdzenie 11.2 Zbior w przestrzeni metrycznej jest ciggowo zwarty wtedy i tylko wtedy, gdy jest zwarty.

Definicja 11.2 Funkcja rzeczywista, ktorej dziedzing jest zbior X, jest ograniczona wtedy i tylko wtedy, gdy
InrsoVeex!|f(2)] < M (11.3)

Uwaga 11.2 Inaczej mowimy, ze f(X) C B(0, M) dla pwenego dodatniego M. Pozwala, to uogdlnié¢ pojecie odwzorowania

ograniczonego okreslonego na przestrzeniach metrycznych.

Definicja 11.3 Odwzorowanie T z przestrzeni metrycznej (X1, d1) w przestrzen metryczng (Xa, da ) nazywamy ograniczonym
wtedy 1 tylko wtedy, gdy
ElzoGXz E|7">0/I‘(‘le) g B(an 71) (114)

Twierdzenie 11.3 Niech T bedzie odwzorowaniem cigglym zwartej przestrzeni metrycznej (X, dx) w przestrzer metryczng
(Y,dy). Wéwcezas T(X) jest zwarty.

Whiosek 11.1 Jezeli f jest odwzorowaniem cigglym zwartej przestrzeni metrycznej (X,dx) w E, to zbior f(X) jest do-
mkniety 1 ograniczony. A wiec odwzorowanie f jest ograniczone.
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Twierdzenie 11.4 (Weierstrassa) Niech f bedzie ciggle funkcjq rzeczywistq okreslong na zwartej przestrzeni metrycznej
(X,d) i niech
M = sup f(p) Am = inf f(p). (11.5)
pEX peX
Wiwczas istniejq punkty p,q € X takie, ze f(p)=M i f(qg)=m.

Uwaga 11.3 Twierdzenie 11.4 mozna wyrazié nastepujgco: Funkcja ciggla na zbiorze zwartym osigga swoje kresy.

Twierdzenie 11.5 Niech T bedzie odwzorowaniem cigglym zwartej przestrzeniu metrycznej (X, dx ) w przestrzen metryczng

(Y,dy). Wéwczas T jest odwzorowaniem jednostajnie cigglym.

Twierdzenie 11.6 Niech (X,dx) bedzie przestrzeniq metryczng zwartg, za$ (Y, dy) przestrzenig metryczng oraz T: X —Y
cigglg bijekcjg. Wtedy T~ jest ciggle.

11.2 Ciaglosé i spojnosé

Niech (X, d) bedzie przestrzenia metryczna.

Definicja 11.4 Zbiory A i B przestrzeni metrycznej (X,d) nazywamy oddzielonymi (rozgraniczonymi) wtedy i tylko wtedy
gdy
(ANC1(B))U(Cl(A)NB)=10 (11.6)

Przyktad 11.2 W jednowymiarowej przestrzeni euklidesowej zbiory [0,1] i |1,2[ nie sq oddzielone. Natomiast zbiory 10,1] ¢
11,2[ sq oddzielone.

Definicja 11.5 Zbior A przestrzeni metrycznej nazywamy spéjnym wtedy i tylko wtedy, gdy nie jest sumg dwdch niepustych
i otwartych zbioréw oddzielonych.

Przyktad 11.3 W jednowymiarowej przestrzeni euklidesowej zbior |0, 1[U]1, 2[ nie jest spdjny.

Twierdzenie 11.7 Jezeli T jest odwzorowaniem cigglym spdjnej przestrzeni metrycznej (X,dx) w przestrzer metryczng
(Y,dy), to zbior f(X) jest spdjny.

Uwaga 11.4 Przyjmujemy konwencje, ze przedziatami w jednowymiarowej przestrzeni euklidesowej E' sq odcinki, pétproste

1 prosta.

Uwaga 11.5 Nalezy uwazaé, gdyz zapis [1, —1] tez reprezentuje przedzial, ale pusty.

Twierdzenie 11.8 Jedynymi zbiorami spojnymi jednowymiarowej przestrzeni euklidesowej sq przedzialy.
Whniosek 11.2 (liggly obraz przedzialu jest przedzialem.

Definicja 11.6 Niech A bedzie przedzialem jednowymiarowej przestrzeni euklidesowej E', f: A — R. Moéwimy, ze f ma

wiasno$é Darbouz wtedy i tylko wtedy, gdy
VapeaVeerTzeaa <bA (f(a) <ec < f(b)V fla) >c> f(b) = f(z) =c¢ (11.7)

Twierdzenie 11.9 (Darboux) Niech f : [a,b] — R bedzie ciggle funkcjg rzeczywistq. Jezeli f(a) < f(b) (lub f(a) > f(b))
i ¢ jest dowolng liczbg rzeczywistq takg, Ze f(a) < ¢ < f(b) (odpowiednia f(a) > ¢ > f(b)), to istnieje punkt x €]a, b| taki, ze
fw)=c.

Uwaga 11.6 Twierdzenie 11.9 mozna sformulowaé nastepujgco: Ciggla funkcja rzeczywista na przedziale (odcinku) ma

wlasnosé Darboux.
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11.3 Zadania
Zadanie 11.1 Udowodnié twierdzenie 11.2.

Zadanie 11.2 (Charakteryzacja kresu gérnego przez granice) Niech A C R bedzie ograniczony z gdry oraz niech

M = sup A. Wtedy istnieje cigg (a,) C A taki, ze nlLrI;o an, =M.
Zadanie 11.3 Udowodnié, Ze podzbior A przestrzeni euklidesowej E' jest spojny wtedy i tylko wtedy, gdy spelnia warunek
VeyeaVaert < 2 <y =2 € A. (11.8)
Warunek ten oznacza, Ze zbior spéjny musi bycé przedziatem.
Zadanie 11.4 Niech rzeczywista funkcja spelnia warunek
Vayerf(z+y) = flx) + fy), (11.9)
Udowodnié, ze jezeli jest ona ciggla w pewnym punkcie, to jest ciggla w kazdym punkcie osi liczbowey.
Zadanie 11.5 Udowodnié, ze jezeli rzeczywista funkcja cigglg i spelnia warunek
Vayerf(x +y) = f(@) + f(y), (11.10)
to jest postaci f(z)=azx.
Zadanie 11.6 Wyznaczyé wszystkie funkcje ciggle f : R — R spelniajgce warunek
Voyerf(@ +y) = f(@)f(y) (11.11)
Zadanie 11.7 Wyznaczyé wszystkie funkcje ciggle f : R — R spelniajgce warunek
Vayerf(zy) = f(x) + f(y). (11.12)

Zadanie 11.8 Dia funkcji rzeczywistych f i g okreslamy funkcje h(x) = max{f(z), g(z)}. Udowodnié, ze jezeli f i g sq ciggle,

to rowniez jest ciggla funkcja h.

Zadanie 11.9 Zbudowaé funkcje rzeczywistq, ktora jest nieciggla w kazdym punkcie, za$ jej kwadrat jest ciggly w kazdym.
Zadanie 11.10 Niech I = [0,1]. Udowodnié, ze jezeli f : I — I jest ciggla, to istnieje punkt x € I taki, ze f(z)=x
Zadanie 11.11 Niech funkcja f bedzie ciggla na przedziale [a,b]. Definiujmy na przedziale [a,b] funkcje

F(z)= sup f(t). (11.13)

t€la,z]

Udowodnié ze funkcja F jest ciggla na przedziale [a,b].
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Wyktad 12

2003.01.13 / 3h

12.1 Ciaglosé i spojnosé

Twierdzenie 12.1 Niech A bedzie podzbiorem spéjnym jednowymiarowej przestrzeni euklidesowej £, f cigglq i réznowar-

tosciowq funkcjq rzeczywistq o dziedzinie A. Wowczas f jest Scisle monotoniczna.

Uwaga 12.1 W twierdzeniu 12.1 mozna zaktadad, ze podzbior A jest przedziatem, gdyz na mocy fakéw z poprzedniego wykiadu

w jednowymiarowej przestrzeni euklidesowej to sg réwnowazne pojecia.

Uwaga 12.2 Zalozenie, ze A jest podzbiorem spojnym w twierdzeniu 12.1 jest istotne, gdyz wystarczy rozpatrzeé funkcje

flz)=1.

Twierdzenie 12.2 Niech A bedzie podzbiorem spéjnym jednowymiarowej przestrzeni euklidesowej £, f cigglq i réznowar-

tosciowq funkcjq rzeczywistq o dziedzinie A. Wowcezas f~1: f(A) — R jest cigglq.

12.2 Nieciggltos$é. Klasyfikacja punktéw niecigglosci funkcji z R w R

Rozwaza¢ bedziemy funkcje o dziedzinach i wartoéciach rzeczywistych.

Twierdzenie 12.3 Niech funkcja f bedzie okreslona na odcinku ]a,bl. Niech x €]a,b]. Wdwczas granica funkcji f istnieje

wtedy 1 tylko wtedy, gdy istniejg granice jednostronne i sqg sobie réwne.

Definicja 12.1 Niech funkcja f bedzie okreslona na odcinku |a,b[. Jezeli funkcja f jest nieciggla w punkcie x €]a,b| oraz
istniejg skonczone granice jednostronne, to mowimy, ze w punkcie x funkcja ma niecigglo$¢ pierwszego rodzaju. W przeciwnym

wypadku mowimy, Ze ma niecigglosé drugiego rodzaju.

Przyktad 12.1 Funkcja Dirichleta zadana wzorem

1 diaxe@Q
f(x){o dlaz €R\Q (12.1)

ma w kazdym punkcie niecigglo$é drugiego rodzaju.
Przyktad 12.2 Funkcja f(x) = sign(z) ma w zerze niecigglo$é pierwszego rodzaju. analogicznie funkcja g(x) = |f(x)|.

Twierdzenie 12.4 Jezeli f jest funkcjg monotoniczng na przedziale la,b]. Wéwczas dla dowolnego punktu x €la,b| granice
jednostronne istniejq.

Jezeli f jest niemalejgca, to

sup f(t) = f(z7) < f(a) < f(z¥) = inf (1) (12.2)

a<t<z r<t<b

N

1 ponadto jezeli a < x <y < b, to
F@™) < fly). (12.3)

Analogiczne nieréwnosdci zachodzq dla funkcji nierosngcych.
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Uwaga 12.3 Dowdd twierdzenia 12.4 dla funkcji nierosngcych wynika z faktu, iz funkcja przeciwna do nierosngcej jest

niemalejgca.
Whniosek 12.1 Funkcja monotoniczna nie ma niecigglosci drugiego rodzaju.

Definicja 12.2 Powiemy, Ze zbior A jest przeliczalny wtedy i tylko wtedy, gdy istnieje bijekcja f ze zbioru A na zbidr N.

Mowimy, ze zbior jest co najwyzej przeliczalny wtedy i tylko wtedy, gdy jest przeliczalny lub skonczony.

Twierdzenie 12.5 Niech f bedzie funkcjg monotoniczng na przedziale |a, b, gdzie a < b. Wéwczas zbior punktéw przedzialu

la, b w ktorych funkcja f jest nieciggla jest co najwyzej przeliczalny.
Whniosek 12.2 Jezeli f : R — R jest funkcjg monotoniczng, to zbior punktow niecigglosci jest co najwyzej przeliczalny.

Twierdzenie 12.6 Dla dowolnego zbioru przeliczalnego 2 (co najwyzej przeliczalnego) istnieje funkcja rzeczywista, ktdrej

punktami niecigglosci sq punkty ze zbioru 2.

12.3 Ciaglosé elementarnych funkcji rzeczywistych

Definicja 12.3 Niech A C R, zas f : A — R. Mowimy, Ze funkcja f spelnia warunek Lipschitza ze stalq L > 0 (na zbiorze
A) wtedy i tylko wtedy, gdy
Vayealf(x) = f(y)| < Llz -y (12.4)

Uwaga 12.4 Warunek Lipschitza mozna rozwazaé na podzbiorze dziedziny funkcji.

Twierdzenie 12.7 Jezeli funkcja f: A — R spelnia warunek Lipschitza z pewng stala, to jest jednostajnie ciggla, w wiec

ciggla.
Stwierdzenie 12.1 Funkcja f(x) = |z| jest ciggla w swojej dziedzinie naturalnej, czyli R.

Lemat 12.1 Zachodzi nastepujgca nieréwnosé
Veer|sinz| < |z| (12.5)

Lemat 12.2 Funkcja f(x) = cosx w swej naturalnej dziedzinie spelnia warunek Lipschitza ze stala 1.
Lemat 12.3 Funkcja f(x) = sina w swej naturalnej dziedzinie speinia warunek Lipschitza ze stala 1.
Twierdzenie 12.8 Funkcje sinus i cosinus sg ciggle w swojej naturalne;j dziedzinie.

Stwierdzenie 12.2 Funkcja f(z) = X w swojej naturalnej dziedzinie (R \ {0}) jest ciggla

x

Stwierdzenie 12.3 Funkcja potegowa w swojej naturalne;j dziedzinie jest ciggla.
Definicja 12.4 Zdefiniujmy funkcje wykladnicza i logarytmiczng o podstawie e (stala ta pojawila sie jako granica ciggu
(1+3)")
dof o ¥
z 4
z et 2 T (12.6)
k=0

nazywamy funkcjq wykladniczqg. Jest ona roznowartosciowa. Funkcje odwrotng do niej oznaczang Inx nazywamy funkcjg

logarytmiczng o podstawie e.
Twierdzenie 12.9 Funkcja wykladnicza jest funkcjg cigglg.
Whniosek 12.3 Funkcja logarytmiczna jest ciggla.

Definicja 12.5 Funkcje wykladniczg o dowolnej dodatniej podstawie a definiujemy nastepujgco

o def

T a etna, (12.7)

Natomiast funkcje logarytmiczng o podstawie dodatniej i réznej od zera okreslamy nastepujgco

of |
x = logaacd—f ne (12.8)

=

Whniosek 12.4 Tak okreslone funkcje sq ciggle.

IDowéd pézniej.
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12.4 Definicja rézniczkowalnosci funkcji w punkcie i pochodnej

Niech A bedzie podzbiorem jednowymiarowej przestrzeni euklidesowej £!, zaé zy punktem skupienia zbioru A. Niech f: A —
R.

Definicja 12.6 Niech xg € A. Méwimy, Ze funkcja f jest rézniczkowalna w punkcie xoy wtedy i tylko wtedy, gdy istnieje

(skoticzona) granica

lim f(xo+h) —f(mo).

12.
h—0 h ( 29)

Granice tq, o ile istnieje, nazywamy pochodng funkcji f w punkcie xo i oznaczamy f'(xo) lub %|m:$0.
Uwaga 12.5 W praktyce mamy doczynienia ze zbiorem A, ktory jest przedziatem lub suma przedzialow.
Uwaga 12.6 Wyrazenie w réwnaniu 12.9 musi mieé sens tzn. f(xo + h) musi byé okreslone czyli xo + h € A.

Uwaga 12.7 W przypadku, gdy A = [a,b] dla a < b i jesli funkcja f jest rézniczkowalna w punkcie a (odpowiednio w punkcie
b), to pochodng w punkcie a (odp. w punkcie b) nazywamy pochodng prawostronng (odpowiednio pochodng lewostronng) i
oznaczamy jg f' (a) (odpowiednio f' (b)).

Mozna tez mowic o pochodnych jednostronnych w dowolnym punkcie wewnetrznym zbioru.

Uwaga 12.8 Jezeli nie bedzie inaczej zaznaczone od tego momentu rozwazamy funkcje okreslone na przedziale [a,b] dla

a<b.

12.5 Zadania
Zadanie 12.1 Udowodnic¢ twierdzenie 12.2.
Zadanie 12.2 Uzupelni¢ dowdd twierdzenia 12.6.

Zadanie 12.3 Udowodnié, ze jezeli f : A — R jest funkcjg monotoniczng i jej zbior wartosci jest przedzialem, to f jest

funkcjq cigglq.
Zadanie 12.4 Udowodnié, Ze funkcja rzeczywista $cisle monotoniczna jest réznowartosciowa.

Zadanie 12.5 Udowodnié, ze jezeli P C R jest przedzialem oraz funkcja f: P — R jest scisle monotoniczna, to funkcja
odwrotna f~1: f(P) — P jest ciggla.

Zadanie 12.6 Udowodnié, ze funkcja
r diazeQ

f(x):{o dlaz € R\ Q

ma w kazdym punkcie zbioru R\ {0} niecigglosé drugiego rodzaju, zas w 0 jest ciggla.

(12.10)

Zadanie 12.7 Podaé¢ przyklad funkcji okreslonej na R, ktdra nie jest ciggla w zZadnym punkcie, a jej kwadrat jest ciggly w
kazdym.

Zadanie 12.8 Korzystajg z okreslenia funkcji wyktadniczej o podstawie e udowodnié, ze €® - e¥ = e*1Y. Skorzytaé z deinicji

tloczynu Cauchy’ego szeregow.

Zadanie 12.9 Korzystajgc z toisamosci Eulera e = cost +isint i definicji funkcji €® wyrazié funkcje sinus i cosinus za

pomocq 8267”69610.
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Wyklad 13

2003.01.20 / 3h

13.1 Roézniczkowalnosé funkcji. Pochodne

Niech A bedzie podzbiorem jednowymiarowej przestrzeni euklidesowej £!, zaé p punktem skupienia zbioru A takim, ze p € A.
Niech f: A — R.

Whniosek 13.1 Funkcja jest pochodng w punkcie p wtedy i tylko wtedy, gdy ma pochodne jednostronne i sq one sobie rowne.
Uwaga 13.1 Od tej chwili bedziemy zakladaé, Ze A jest przedzialem oraz p € A.

Twierdzenie 13.1 Funkcja f jest rézniczkowalna w punkcie p wtedy i tylko wtedy, gdy istnieje a € R takie, zZe

(p, h)
h

flp+h) = f(p) = ah +r(p,h) A lim =0, (13.1)
gdzie funkcja r(p,-) jest okreslona dla na zbiorze {h:p + h € A}, ciggla w zerze oraz r(p,0) = 0.

Uwaga 13.2 Zauwazmy, Ze a wystepujgce w twierdzeniu 13.1 to po prostu pochodna funkcji f w punkcie p.

Uwaga 13.3 Prosta o h — f(p) + ah nazywa sie styczng do wykresu funkcji f w punkcie p, za$ odwzorowanie h +— ah

nazywamy rozniczkg funkcji f w punkcie p.
Twierdzenie 13.2 Funkcja rozniczkowana w punkcie p jest cigglq w p.
Przyktad 13.1 Funkcja f(x) = |x| jest ciggla, ale nie jest rézniczkowalna w zerze.

Definicja 13.1 Mowimy, Ze funkcja jest réiniczkowalna na przedziale A wtedy i tylko wtedy, gdy jest rézniczkowalna w

kazdym punkcie tego przedziatu.
Definicja 13.2 Niech f bedzie funkcjg rézniczkowalng na przedziale A. Odwzorowanie
Aszw— f'(z) eR (13.2)

nazywamy pochodng funkcji f i oznaczamy f’

13.2 Dzialania algebraiczne na funkcjach rézniczkowalnych
Niech A, B beda niezedegenerowanymi przedzialami jednowymiarowej przestrzeni euklidesowe;j.

Uwaga 13.4 Zbior wszystkich rzeczywistych funkeji okreslonych i cigglych na przedziale A oznaczamy przez C(A) = C°(A),
za$ okreslonych i rézniczkowalnych na zbiorze A oznaczamy przez DY(A) = D(A). Natomiast zbior wszystkich rzeczywistych
funkeji okreslonych i réiniczkowalnych na zbiorze A, ktérych pochodne sq funkcjami cigglymi oznaczamy przez C1(A).

Zauwazmy, ze zachodzg nastepujgce (wlasciwe) zawierania

CL(A) c D(A) C C(A).
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Przyklad 13.2 Niech A = R. Funkcja f(z) = |x|. Wéwczas f € C(A) oraz f ¢ D'(A).

Twierdzenie 13.3 Niech p € A oraz f,g: A — R bedq funkcjami rézniczkowalnymi w p. Niech o, f € R. Wiowczas:
(i) af 4+ By jest rézniczkowalna w p oraz (af + Bg)' (p) = af'(p) + B9’ (p);
(i1) [ - g jest rézniczkowalna w p oraz (f - g)' (p) = f'(p) - 9(p) + f(p) - ¢'(p);

(iii) jezeli g(p) # 0, to 5 jest rézniczkowalna w p oraz (%)’(p) = f’(p)~g(;;)2—(1{)(p)-g’(p)

Twierdzenie 13.4 Niech p € A oraz f(p) € B. Niech f:A — R, g: B — R. Jezeli f jest rézniczkowalna w p oraz g jest
rézniczkowalna w f(p), to go f jest rézniczkowalna wp oraz (go f) (p) = (¢' o f)(p) - f'(p).

Twierdzenie 13.5 Niech f: A — R bedzie funkcjg réznowartosciowq i rézniczkowalng w punkcie p oraz f'(p) # 0. Wéwczas

w punkcie ¢ = f(p) funkcja f=1 jest rézniczkowalna oraz
1
Y (q) = — 13.3
(f7) (@) 7o) (13.3)

Funkcje elementarne i ich pochodne.

’ flx) ‘ ' (z) H Zalozenia

x® ar®l ||l z e Ry
e’ e’
a* a*lna || a € Ry \ {1}
Inz % r e Ry
log,z | —— ||z €RyAaeRy\ {1}

sinx CcosT

cosz | —sinz
tgx CO;% r# S +krANkEZL
ctgx —# x#FknNkeZ

X

’ f(z) ‘ f(x) H Zalozenia ‘

arcsinz 11_:62 Dy =[-1,1]ADp =] — 1,1]
arccosz | — 1£$2 Dy =[-1,1]ADy =] —1,1]
arctg x 1+1w2
arcctgx *Tlﬂ

Uwaga 13.5 Przez Dy oznaczamy dziedzine funkcji f.

13.3 Twierdzenia o wartosci sredniej rachunku rézniczkowego

Rozwazaé bedziemy funkcje rzeczywiste argumentu rzeczywistego (rozwazamy jednowymiarowa przestrzen euklidesowa).
Twierdzenie 13.6 (Rolle’a) Niech a < b oraz f:[a,b] — R. Jezeli f € C([a,b]) N D(]a,b]) oraz f(a) = f(b), to istnieje
punkt ¢ €la, b| taki, ze f'(c) = 0.

Twierdzenie 13.7 (Cauchy’ego o wartodci $redniej) Niech a < b oraz f,g:[a,b] — R. Jezeli f,g € C([a,b]) N D(]a,b[),
to istnieje punkt ¢ €|a, b| taki, ze

g'(©((f(b) = f(a)) = f'(c)(g(b) — g(a)) (13.4)
Whiosek 13.2 Jezeli spelnione sq zalozenia twierdzenia 13.7 i ponadto pochodna funkcji g nie zeruje sie w przedziale |a, b|,

f(0) = fla) _ f'(e)
_ 13.5
g9(b) —g(a)  ¢'(¢) 159
Twierdzenie 13.8 (Lagrange’a o wartoéci Sredniej) Niech a < b oraz f:[a,b] — R. Jezeli f € C([a,b]) N D(]a,d]), to

istnieje punkt ¢ €]a,b| taki, ze

to




13.4 Zadania

Zadanie 13.1 Pokazaé, Ze zawieranie C1(A) C D'(A) jest wlasciwe.

Zadanie 13.2 Udowodnié¢ wszystkie wzory wystepujoce w tabeli: Funkcje elementarne i ich pochodne.

Zadanie 13.3 Niech P bedzie niezdegenerowanym przedziatem. Udowodnié, ze jesli f € D(P), to f' ma wlasno$é Darbous.

Zadanie 13.4 Udowodnié, ze jesli funkcja f jest rézniczkowalna w punkcie p, to

vy Jlp+h)=f(p—h)
fi(p) = lim o7

(13.7)

fpth)=f(p=h)
2h

Zadanie 13.5 Podaé przyklad funkcji dla ktorej istnieje granica ]}Lirr%) , ale funkcja nie jest w punkcie p réznicz-

kowalna.

Powyzszq granice nazywamy pochodng wogélniong funkcji f w punkcie p.

Zadanie 13.6 Podac przyktad funkcji niecigglej w punkcie posiadajgcg pochodng uwogélniong w tym punkcie.

o1



Wyktad 14
Egzamin

14.1 Zagadnienia na egzamin — cze$¢ teoretyczna

1. Relacje. Ciata liczbowe i uporzadkowane. Kresy.

(a) Relacje i ich typy.

(b) Cialo liczbowe i jego wlasnosci.
) Cialo uporzadkowane i jego wlasnosci.
)

(c

(d) Kresy w ciele uporzadkowanym i ich wlasnosci.

2. Liczby rzeczywiste

(a) Zasada ciaglosci Dedekinda (5.0).
(b) Kresy w liczbach rzeczywistych i ich wlasnosci.
)

(¢) Zasada Archimedesa.
(d) Gestosé liczb wymiernych.
(e) Twierdzenie o pierwiastku.
(f) Wartosé bezwzgledna i jej wlasnosci.
(g) Srednie arytmetyczna, geometryczna i harmoniczna i zwigzek miedzy nimi.
(h) Indukcja matematyczna zupelna.

(i) Rozszerzony zbidr liczb rzeczywistych.
3. Ciagi liczbowe.

Ciagi zbiezne i granica ciagu zbieznego. T'wierdzenie o jednoznacznosci granicy.
Ciagi ograniczone i ich zwiazek z ciagami zbieznymi.

Dzialania na granicach ciagéw zbieznych.

Twierdzenie o trzech ciagach i wnioski z niego.

Ciagi monotoniczne.

)
)
)
)
)
f) Podciagi. Twierdzenie Bolzano - Weierstrassa.
) Zwiazek miedzy ciagami monotonicznymi ograniczonymi, a zbieznymi.
) Ciagi Cauchy’ego, a ciagi zbiezne.
) Ciagi rozbiezne do nieskoniczonosci. Ciagi zbiezne w szerszym sensie.
) Ciagi monotoniczne i rozbiezne do nieskonczonosci.
)

Pojecie granicy gornej i dolnej ciagu liczbowego.
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(1) Wlasnosci granicy gérnej i dolnej ciagu liczbowego. Zwiazek ich z granica.
4. Szeregi liczbowe.

Szereg liczbowy. Zbiezno$¢ szeregéw liczbowych.

Warunek konieczny i dostateczny zbieznosci szeregbéw.

Dziatania na szeregach zbieznych.

Szeregi nieujemne. Kryterium Weierstrassa zbieznosci i rozbieznoéci.
Kryterium zageszczania Cauchy’ego.

Kryterium Cauchy’ego (z granica gérna).

Kryterium d’Alemberta.

)
)
)
)
)
)
(8)
(h) Kryterium Kummera i Raabego.
) Lemat Abela. Kryterium Abela - Dirichleta.
) Szeregi naprzemienne. Kryterium Leibniza.
) Szeregi bezwzglednie i warunkowo zbiezne. Szeregi bezwzglednie zbiezne, a zbiezne.
) Szeregi warunkowo zbiezne. Twierdzenie Riemanna.
) Tloczyn Cauchy’ego szeregdéw. Twierdzenie Cauchy’ego.
)

Szeregi potegowe. Twierdzenie Cauchy’ego - Hadamarda.
5. Funkcje

(a) Pojecie funkeji. Obraz i przeciwobraz i ich wlasnosci.

(b) Typy funkcji.
6. Elementy topologii

Przestrzen metryczna. Jednowymiarowa przestrzen euklidesowa.

Zbiory otwarte w przestrzeni metrycznej i ich wlasnosci.

Przestrzen topologiczna. Przestrzen metryczna jako przestrzen topologiczna.
Zbiory domkniete w przestrzeni metryczne i ich wlasnosci.

Domkniecie zbioru, a punkty skupienia zbioru.

Przestrzen metryczna zupelna. Zupelnosé jednowymiarowej przestrzeni euklidesowej.

)
)
)
)
)
)
) Zupelno$é rozszerzonej jednowymiarowej przestrzeni euklidesowej (5.0).
) Zbiory zwarte w przestrzeni metrycznej.

) Rownowazno$¢ okreslenia zwartosci zbioru w przestrzeni metrycznej (5.0).

) Twierdzenie Bolzano - Weierstrassa o zwartosci odcinka domknietego w jednowymiarowej przestrzeni euklidesowej.
) Warunki réwnowazne zwartoéci w jednowymiarowe]j przestrzeni euklidesowe;.

) Zbiory i przestrzenie spdjne.

)

Zbiory spojne w jednowymiarowe]j przestrzeni euklidesowe;.
7. Funkcje w przestrzeniach metrycznych (funkcje rzeczywiste).

(a) Definicje Cauchy’ego i Heinego granicy funkcji w punkcie i ich réwnowaznosé.
(

b

Jednoznacznos¢ granicy funkcji w punkcie i dzialania na granicach.

)
)
(¢) Funkcje ciagte w przestrzeni metrycznej. Funkcje ciagle w punkcie — warunki réwnowazne.
(d) Réwnowazno$¢ definicji ciaglosci w punkcie Cauchy’ego i Heinego.

)

(e) Ciaglosé w punkcie, a granica w punkcie.
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f

—~

Dzialania na funkcjach ciagtych.
(g) Jednostajna ciaglodé, a ciaglosé.
(h
@
J
k
(1

(m

Twierdzenie o ciaglym obrazie przestrzeni metrycznej zwartej i wnioski z niego.
Twierdzenie Weierstrassa o ciaglej funkcji rzeczywistej na zwartej przestrzeni metryczne;j.

Jednostajna ciaglodé, a ciagto$¢ odwzorowania na zwartej przestrzeni metrycznej.

—~~

Twierdzenie o ciagtosci bijekcji ciagtej okreélonej na zbiorze zwartym.

Twierdzenie Darboux (wlasnosé Darboux).
(n) Twierdzenie o funkcji odwrotnej okreslonej na zbiorze spéjnym.
(o
(p
(a

(r

8. Rézniczkowalnosé i pochodne funkcji.

)

)

)

)

)

)

) Twierdzenie o ciaglym przeksztalceniu przestrzeni (zbioru) spéjnego.

)

)

) Granice jednostronne. Nieciaglosé. Klasyfikacji punktéw niecigglodei.

) Punkty nieciaglosci funkcji monotoniczne;j.

) Twierdzenie o istnieniu funkcji nieciagltej w zadanym zbiorze przeliczalnym (5.0).
)

Warunek Lipschitza, a jednostajna ciaglosé.

(a) Pojecie rézniczkowalnosci funkeji — warunki réwnowazne. Pochodna funkcji w punkcie.
(b) Ciaglosé, a rézniczkowalnosé.

(¢) Dzialania algebraiczne na funkcjach rézniczkowalnych.
(d) Pochodne funkcji elementarnych.
e) Twierdzenie Rolle’a.

)
)
)
)
)
f)

(
(

Twierdzenia o wartosci $redniej.
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14.2 Zadania z egzaminu

1.

(4pkt+4pkt+4pkt/40pkt) Policzyé granice

n

a) lim 1ﬁ b) lim V142607 C)wﬂrfoo( o Frﬁ_ﬁ)

n—oo k=
. S ‘ . n? b - n(2+(=1)™)"
(4pkt+4pkt/40pkt) Zbadaé zbieznosé szeregéw a) > T ) 2_21 o

(4pkt/40pkt) Udowodnié, ze jezeli zbiezne sa szeregi > a, i Y. by oraz dla dowolnej liczby naturalnej n zachodzi

n=1 n=1

(o)
nieréwnosé a, < ¢, < by, to réwniez szereg > ¢, jest zbiezny.
n=1

(4pkt/40pkt) Wyznaczy¢ wzoér funkcji f(x) jezeli f(x +1) = 2? — 3z + 2.

(4pkt/40pkt) Niech funkcja f:R — R bedzie ciagla oraz niech ¢ € R;. Udowodnié, ze funkcja R 3 = — f.(z) =
c dla f(z) > ¢

f(z) dla|f(z)] <c jest ciagla.
—c dla f(z) < —c
(4pkt/40pkt) Zbadaé ciaglosé funkcji f:R — R i sklasyfikowaé punkty nieciaglosci jezeli okre$lona jest wzorem
% dlaz <0
2y dla0<z<1
4-2¢ dlal<z<25
2c —7 dlax>25

fz) =

3

(4pkt/40pkt) Udowodnié¢ jednostajna ciaglosé funkcji f: R — R zadang wzorem f(z) = x* na przedziale [0, 3].

14.3 Zadania z egzaminu poprawkowego

1.

. 2n P
(4pkt+4pkt+4pkt/40pkt) Policzy¢ granice a) liar_l "nsjii’l“ b) lim (3n+1) ¢) lim 2’z to—1
n—-+oo L

(4pkt-+4pkt/40pkt) Zbadaé zbieznosé szeregbw a) > 522 b) Yo 2417

n=1 n=1
(4pkt/40pkt) Niech |z| > 2. Wyznaczy¢ wzor funkeji f(z) jezeli f(z + 1) = 2% + &,
. , .. , . Vitz—z  g15 4 7& 0 .. ..
(4pkt/40pkt) Zbadaé ciaglosé funkeji f: R — R okreslonej wzorem f(x) = z . Jezeli funkcja jest
0 dlaz=0

nieciaglta w jakim$ punkcie, to sklasyfikowa¢ punkt nieciaglosci.

arctg% dla z #0

byla ciagta
a dlaz =0

(4pkt/40pkt) Czy mozna dobra¢ parametr a, tak aby funkcja zadana wzorem f(z) = {

w punkcie 0 ?

(4pkt/40pkt) Udowodni¢ jednostajna ciagltoéé funkeji zadana wzorem f(x) = 1/ na przedziale [1, +o00].

(4pkt/40pkt) Niech f,(z) = (fo fo...o f)(x). Wyznaczy¢ f,(z) jezeli f(x) = A

n
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14.4 Zadania z egzaminu komisyjnego

Si=

n
1. (5pkt/40pkt) Udowodnié, ze dla kazdej liczby naturalnej n zachodzi nieréwnosé > k—lz <2-—
k=1

2. (5pkt+5pkt/40pkt) Policzyé granice a) nliHolo Ver +3"+ 7" +sinn b) lin}) SR
3. (5pkt+5pkt/40pkt) Zbadaé zbieznosé szeregow a) Y, Z-U- by Yo LU
n=1 n=1 n

4. (5pkt/40pkt) Wyznaczy¢ wzor funkcji f(z) jezeli f(1) =2+ 1+ 22

(r—1) dlaz<0
5. (5pkt/40pkt) Czy mozna dobraé¢ parametry a i b tak, aby funkcja zadana wzorem f(z) =¢ az+b 1ldal0<z <1
NG dlaxz >0
byla ciagla w swojej dziedzinie?

2

6. (5pkt/40pkt) Udowodnié z definicji jednostajna ciaglo$é funkeji zadana wzorem f(x) = x# na przedziale |0, 2[.
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Wyktad 1

2003.02.17 / 3h

1.1 Uwaga do twierdzenia Lagrange’a o wartosci Sredniej

Uwaga 1.1 Przyjmijmy, e b = a + h dla h > 0 wtedy teze twierdzenia Lagrange’a (twierdzenie 13.8) mozna sformulowad

nastepujgco
Jeej1(f(a+h) — f(a) = hf'(a+ Oh) (1.1)

1.2 Monotonicznos$é, a pochodna

Niech P bedzie niezdegenerowanym przedzialem jednowymiarowej przestrzeni euklidesowej. Niech f: P — R.

Twierdzenie 1.1 Niech f € D(P).
(i) Jezeli f'(x) =0 dla x € P, to f jest stala na P.
(i) Jezeli f'(x) > 0 dla x € P, to f jest rosngca na P.
(ii1) Jezeli f'(x) > 0 dla x € P, to f jest niemalejgca na P.
(i) Jezeli f'(x) < 0 dla x € P, to f jest malejgca na P.
(v) Jezeli f'(x) <0 dla x € P, to f jest nierosngca na P.

Uwaga 1.2 Istotnym zalozeniem jest spojno$é przedziatu P

Przyktad 1.1 Funkcja f:]0,1[U]2,3[— R okreslona wzorem

1 dlaz€]0,1]

5 dlax €]2,3] (1.2)

)=
ma pochodng réowng zeru w swojej dziedzinie, ale nie jest stala.
Przyklad 1.2 Funkcja f:R\ {0} — R okreslona wzorem f(x) = 1 ma pochodng caly czas ujemnq, ale nie jest malejoca.

Twierdzenie 1.2 Niech f € D'(P).
(i) Jezeli f jest stala na P, to f'(x) =0 dla x € P.
(ii) Jezeli f jest niemalejgca na P, to f'(x) > 0 dla x € P.
(ii) Jezeli f jest nierosngca na P, to f'(x) <0 dla x € P.

Uwaga 1.3 Twierdzenia 1.1 nie daje sie odwrocié w w drugim i trzecim przypadku.

Przyktad 1.3 Funkcja f:R — R zadana wzorem f(x) = x3 jest rosngca, ale f'(0) = 0.
Podobnie dla malejgcej funkcji f(z) = —2* mamy f'(0) = 0.
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1.3 Jednostajna cigglos$é, a pochodna

Niech P bedzie niezdegenerowanym przedzialem jednowymiarowej przestrzeni euklidesowej. Niech f: P — R.

Twierdzenie 1.3 Niech f € DY(P). Wtedy jezeli f' jest ograniczona przez stalg M > 0, to f spelnia warunek Lipschitza
ze stalg M.

Whiosek 1.1 Niech f € DY(P). Wtedy jezeli f' jest ograniczona przez stalg M > 0, to funkcja f jest jednostajnie ciggla
na P.

1.4 Ekstrema. Ekstrama, a pochodna

Niech A C R oraz f: A — R. Niech p € A.

Definicja 1.1 Mowimy, Ze funkcja f ma w punkcie p maksimum lokalne wtedy i tylko wtedy, gdy istnieje otoczenie O, punktu
p takie, ze O, C A oraz dla dowolnego punktu x € O, jest f(z) < f(p).

Moéwimy, zZe funkcja f ma w punkcie p minimum lokalne wtedy ¢ tylko wtedy, gdy istnieje otoczenie O, punktu p takie, ze
O, C A oraz dla dowolnego punktu x € O, jest f(x) > f(p).

Mowimy, Ze funkcja f ma w punkcie p maksimum lokalne wilasciwe witedy i tylko wtedy, gdy istnieje otoczenie O, punktu
p takie, Ze O, C A oraz dla dowolnego punktu x € O, \ {p} jest f(z) < f(p).

Moéwimy, ze funkcja f ma w punkcie p minimum lokalne wlasciwe wtedy i tylko wtedy, gdy istnieje otoczenie O, punktu
p takie, Ze O, C A oraz dla dowolnego punktu x € O, \ {p} jest f(z) > f(p).

Mowimy, zZe funkcja f ma w punkcie p ekstremum lokalne wtedy i tylko wtedy, gdy ma w punkcie p miminum lokalne bgdz
maksimum lokalne.

Mowimy, Ze funkcja f ma w punkcie p ekstremum lokalne wlasciwe wtedy i tylko wtedy, gdy ma w punkcie p miminum

lokalne wiasciwe bgdZ maksimum lokalne wiasciwe.
Uwaga 1.4 Minimum (maksimum) lokalne nazywane tez jest minimum (maksimum) lokalnym niewla$ciwym.

Uwaga 1.5 Otoczenie punktu p O, bez punktu p nazywamy sgsiedztwem punktu p i oznaczamy przez Sp.
Przez S;_ (Sp_) bedziemy oznaczaé sgsiedztwo prawostronne (lewostronne) punktu p.

Przez otoczenie punktu p dla uproszczenia najczesciej bedziemy rozumieé K (p,r) dla pewnego r > 0.

2

Przyklad 1.4 Funkcja f(x) = 2% ma w x = 0 minimum lokalne wlasciwe, zas funkcja f(x) = —x? ma w x = 0 maksimum

lokalne wiasciwe.
Przyktad 1.5 Funkcja f(z) =1 ma w kazdym punkcie minimum oraz maksimum lokalne.

Twierdzenie 1.4 (Fermata — Warunek konieczny istnienia ekstremum lokalnego) Jezeli funkcja f jest okreslona w

otaczeniu punktu p i rézniczkowalana w punkcie p oraz ma w punkcie p ekstremum lokalne, to f'(p) = 0.

Twierdzenie 1.5 (Warunek dostateczny istniania ekstremum lokalnego — I) Jezeli funkcja f jest okreslona w ota-
czeniu Op punktu p oraz jest rézniczkowalna w O, \ {p} i jest ciggla w p, to jesli

(i) f'(x) >0 dlaxz€lp—e,p[if(x) <0 dlaz€lp,p+el, to funkcja f ma wp maksimum lokalne.

(ii) f'(x) <0 dlax €lp—e,p[if'(x) >0 dlaxz€lp,p+e|, to funkcja f ma w p minimum lokalne.

Przyktad 1.6 Niech f(z) = x + 3z3. Wéwczas f'(z) = 1 + 273 oraz Dy =R i Dy = R\ {0}. Funkcja ma wx = —1

maksimum wlasciwe oraz w x = 0 minimum wlasciwe.

Twierdzenie 1.6 Niech f bedzie okreslona na K(p,e) (¢ > 0), klasy C*(K(p,€)) oraz f'(p) # 0. Wtedy istnieje K(p,d) C
K(p.e) (6 >0) taka, zZe f|k(ps) jest odwracalna i f~1 € C1(f(K(p,d)))

Uwaga 1.6 Przez f|a, gdzie A C Dy oznaczamy funkcje f ograniczong (obcigtq) do zbioru A.
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1.5 Pochodne wyzszych rzedéw. Wzér Taylora

Niech P bedzie niezdegenerowanym przedzialem jednowymiarowej przestrzeni euklidesowej. Niech f: P — R. Niech ponadto

A bedzie niepustym zbiorem (przedzialem, suma przedzialéw badz zbiorem otwartym).

Definicja 1.2 (Definicja rekurencyjna) Niech p € P. Moéwimy, ze funkcja f jest n - krotnie rézniczkowalna w punkcie p

(n=1) jest rézniczkowalna w punkcie p.

wtedy 1 tylko wtedy, gdy f jest n — 1 - krotnie rézniczkowalna w punkcie p oraz f

Niech A bedzie niepustym zbiorem (przedzialem, suma przedzialdw badZ zbiorem otwartym).

Mowimy, ze funkcja f okreSlona na zbiorze A jest n - krotnie rézniczkowalna na zbiorze A wtedy i tylko wtedy, gdy w
kazdym punkcie tego zbioru jest n - krotnie rézniczkowalna. Oznaczamy zbior funkcji n - krotnie rézniczkowalnych przez
D" (A).

Mowimy, ze funkcja f okreslona na zbiorze A jest n - krotnie rézniczkowalna w sposéb ciggly na zbiorze A wtedy i tylko
wtedy, gdy jest n - krotnie rézniczkowalna na zbiorze A oraz jej n - ta pochodna jest funkcjg cigglg. Oznaczamy zbior funkcji

n - krotnie rézniczkowalnych w sposdb ciggly przez C™(A).

Uwaga 1.7 Zachodzq nastepujgce inkluzje C"1(A) € D"t1(A) € D"(A) € C"1(A) oraz C"T1(A) € C"(A). Przy czym

sq to zawierania wlasciwe.

Definicja 1.3

D>®(4) < ﬁ D"™(A) (1.3)
o=(4) = ﬁ C"(A) (1.4)

3
Il
—

Whiosek 1.2 D®(A) = C*(A)

Twierdzenie 1.7 (Wzér Leibniza) Niech funkcje f i g bedg n - krotnie rézniczkowalne w punkcie p. Wowczas

n

70w =3 (1)1 9" ) (15)
k=0

Przyjmujemy, ze f© (p) = f(p).

Twierdzenie 1.8 (Taylora) Niech A C R, x € A oraz f € D""(A). Zaléimy, ze dla pewnego dodatniego h odcinek
[z,x + h] C A. Wiczas istnieje liczba © €]0, 1] taka, Ze

fle+h) = flz)+ %f’(m)h + %f@)(x)fﬂ +..4 %f(”)(x)h" + mf("ﬂ)(x + Oh)p"+1 (1.6)
Uwaga 1.8 Dian =0 otrzymujemy twierdznie Lagrange’a (twierdzenie 13.8).
1.6 Zadania
Zadanie 1.1 Udowodnic, zZe funkcja z przykladu 1.8 jest rosngca.
Zadanie 1.2 Udowodnié, Ze funkcja z przykliadu 1.6 ma w punkcie x = —1 maksimum lokalne wlasciwe.
Zadanie 1.3 Udowodnic¢ twierdzenie 1.7.
Zadanie 1.4 Niech f:R — R bedzie funkcjq okreslong nastepujgco

f(x):{exp{—;?} dlaz#0 (1.7)
0 dlaxz =0

Udowodnié, ze wowczas f € C*°(R) oraz w zerze istnieje pochodna dowolnego rzedu i jest réwna ona zeru.
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Wyktad 2

2003.02.24 / 3h

2.1 Zastosowania wzoru Taylora — wzor Macluarina, ekstrema — raz jeszcze,

reguta de I’Hospitala

Whiosek 2.1 (Maclaurina) Niech A C R, 0 € A oraz f € D" (A). Zaléimy, Ze dla pewnego dodatniego x odcinek
[0,2] C A. Wéczas istnieje liczba © €)0,1[ taka, ze

_ 1 ! 1 (2) 2 1 (n) n 1 (n+1) n+1
Twierdzenie 2.1 (Warunek dostateczny istnienia ekstremum lokalnego — IT) Niech ACR, p € A oraz f: A — R.
Niech ponadto istnieje R 3 h > 0 takie, ze f € C"(Ip — h,p+ h) oraz f'(p) = fP(p) = ... = fOV(p) =04 fM)(p) £0.
Wowczas

(i) jesli n jest liczbg nieparzystq, to funkcja nie posiada w punkcie p ekstremum lokalnego;
(ii) jesli n jest liczba przystq, to w funkcja f w punkcie p ma ekstremum lokalne. Ponadto jesli f(p) > 0 to w p ma
minimum lokalne, a gdy f™ (p) < 0 to maksimum lokalne.

Twierdzenie 2.2 (Regula de I"'Hospitala — I) Niech h > 0 oraz f,g € C"(]p — h,p + h[). Zaléimy, Ze istniejg k,l € N,
k<nil<n takie, ze

(i) f(p)=f(p)=...= fED(p)=0i fB(p) £0
(ii) glp) = g'(p) = ... = g"HD(p) =0 i gD (p) #0.
Wowczas
O( : dla k >1
%) (p) _
im 1@ _ ) 70 dla k=1 . (2.2)
a—p g(x) 0o dlak <l orazl —k € 2N

nie istnieje  dla k <1 orazl—k ¢ 2N

Twierdzenie 2.3 (Regula de I"'Hospitala — IT) Niech —co < a < b < 400 oraz f,g € D(]a,b]). Niech ponadto istnieje
granica prawostronna tlorazu ;,g;; w punkcie a. Wtedy, jezeli spetniony jest jeden z warunkéw
(i) lim f(z)=0= lim g(z)
r—at r—a™T

(i) lim+ g(z) = £oo,

to istnieje granica prawostronna ilorazu % w punkcie a i jest rowna granicy prawostronnej ilorazu ; :Ei; w punkcie a.

Uwaga 2.1 Mozna rozwazaé granice lewostronne w punkcie b, jak réwniez granice obustronna (czyli granice) w punkcie
p €la,bl.
Uwaga 2.2 Z requly de I’Hospitala korzystamy liczqc granice nastepujgcych wyrazen (symboli) nieoznaczonych 2, 22 0- o0,

0’ oo’
00 —00,' 09, 0o?, 1°°.

LObie nieskoficzonoéci musza mieé ten sam znak.
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2.2 Weklestosé i wypuklosé, a pochodna. Punkty przegiecia.

Twierdzenie 2.4 Niech f € D(P). Wtedy f jest wypukla na przedziale P wtedy i tylko wtedy, gdy f' jest niemalejgca na
przedziale P

Whiosek 2.2 Niech f € D*(P). Wtedy f jest wypukla na przedziale P wtedy i tylko wtedy, gdy f(x) > 0 dla dowolnego

punktu x z przedziatu P.

Definicja 2.1 Niech punkt p bedzie punktem wewnetrznym przedziatu P.2 Méwimy, ze funkcja f ma w p punkt przegiecia
wtedy i tylko wtedy, gdy istnieje 6 > 0 taka, Ze

(i) K(p,0) € P

(1) funkciami wypuklymi sq funkcje f na S~ (p,8) i —f na ST (p,d), badZ funkcje f na S*(p,d) i —f na S~(p,9).

Twierdzenie 2.5 (Warunek konieczny istnienia punktu przegiecia) Niech punkt p € P bedzie punktem wewnetrz-

nym oraz f € D?(P) i p jest punktem przegiccia funkeji f. Wtedy £ (p) = 0.

Twierdzenie 2.6 (Warunek dostateczny istnienia punktu przegiecia — I) Niech punkt p bedzie punktem wewnetrz-
nym przedziatu P oraz f € D*(P). Jezeli istnieje § > 0 tak, ze spelniony jest jeden warunkéw

(i) fP(z) >0 dlax e S (p,d)ifP()<0 dlaxecSt(p,d)

(ii) f@(x) <0 dlax € S (p,8) i fA(x) >0 dlax e St(p,d),

to funkcja f ma w p punkt przegiecia.

Twierdzenie 2.7 (Warunek dostateczny istnienia punktu przegiecia — II) Niech A C R, p € A oraz f:A — R.
Niech ponadto istnieje R 3 h > 0 takie, ze f € C™(]p — h,p+ h[), gdzie n > 3 oraz f'(p) = fP(p) =... = f*V(p) =0
f (p) # 0. Wowczas jesli n jest liczbg nieparzysta, to funkcja posiada w punkcie p punkt przegiecia.
2.3 Zadania
Zadanie 2.1 Niech f € D(P). Udowodnié, ze f jest wypukia na przedziale P wtedy i tylko wtedy, gdy

Vao,zepf(z) > f'(20)(z — 20) + f(20). (2.3)

Zadanie 2.2 3 Niech P bedzie niezdegenerowanym przedziatem. Udowodnié, ze nastepujgce warunki sq réwnowazne

f jest wypukta na P (2.4)
n n n
Vnevil,..A,wnePVal7,,,,04”€R+U{0} Z oap=1= f(z apy) < Z ap f () 2.5)
k=1 k=1 k=1
L2 — T T—T
Var,20,0epTt < < T2 = f(z) < 5522_ - Fla) + — xllf(:cz) 26
Vi ae,0ePTl < 2T < Ty = f(m) — f(l’l) < f(x2) - f(x) (2.7)
T2 — T — T

Zadanie 2.3 Przeanalizowadé dowdd reguty de I’Hospitala II (twierdzenie 2.3) z podrecznikéw W. Rudina Podstawy analizy

matematycznej © A. Birkholza Analiza matematyczna dla nauczycieli

2Zobacz definicja 8.8(iii)
3Zadanie powtérzone z wyktadu z dnia 9 grudnia 2002.
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Wyklad 3

2003.03.03 / 3h

3.1 Calka niezonaczona

Niech P bedzie przedziatem niezdegenerowanym tzn. nie redukujacym sie do punktu. Niech F, G, f: P — R oraz F,G € D(P)
ifeC(P).

Definicja 3.1 Funkcje F nazywamy funkcjq pierwotng funkcji f na przedziale P wtedy i tylko wtedy, gdy dla dowolnego x € P

zachodzi réunodé F'(z) = f(x).

Twierdzenie 3.1 Niech F i G bedg funkcjami pierwotnymi funkcji f na przedziale P. Wtedy istnieje C' € R taka, Ze dla
dowolnego x € P zachodzi réwno$é F(x) — G(z) = C.

Definicja 3.2 Calkq nieoznaczong funkcji f na przedziale P nazywamy zbior wszystkich funkcji pierwotnych na przedziale P

funkcji f. Miszemy wowczas

/f (x) + C, gdzie C € R AVypepF'(z) = f(x) (3.1)

Funkcje elementarne i ich funkcje pierwotne. (Udowodnié)

’ff Ydx H Zalozenia ‘
[zvde = Zqoat + C a#—-1NzeR,
[idz=Inz+C reER,

[etde =e"+C

[a%dz =& +C aeRy\ {1}

sin xdxr = — cos T +
[ sinzd C
cosxdxr = smmx +
[ cosmda = sinz +C
[ ohzde =tgz+C r# L+ krANkeZ
[ shzde = —ctgz +C x££kt NkeZ
f@z:arcsmerC Dy =]—1,1]

f\/11_7d$=—arccosx+0 Dy =]—1,1]
fﬁdw:arctg:chC
fﬁdw:—arcctg:ﬂ—i—C

Twierdzenie 3.2 Niech f,g € C(P) oraz a, 8 € R. Wéwczas

@t + 89tz =a [ e+ 5 [ oo (3.2)

Twierdzenie 3.3 (Calkowanie przez czeéci) Niech f,g € C1(P). Wéwczas

/&urﬂmmzfu»mm—/fuymmm (3.3)
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Twierdzenie 3.4 (Calkowanie przez podstawianie) Niech A bedzie niezdegenerowanym przedziatem ¢: A — P takq, ze
¢ € C1(A) i dla dowolnego t € A zachodzi ¢'(t) # 0. Niech ponadto f € C(P). Wéwczas

/ f(@)dz = / F(6(0)) - &' (1)t (3.4)

(réwno$é zachodzi na przedziale A).

Przyktad 3.1 Mamy [ze*dr = [(e*) xdx = e*z — [€*(z)dr = ze” — [e"dx = ze* —e® + c.

2

Przyktad 3.2 Mamy [ ze® do = (e ) de =

2
e’ +c.

N[

3.2 Calkowanie funkcji wymiernych

Na poczatku tego paragrafu przypominimy twierdzenia o wielomianach z algebry liniowej.

Twierdzenie 3.5 Niech W,,(x) = ag+a1x+. ..+ a,x™ wtedy wielomian W (x) mozna jednoznaczenie przedstawié w postaci
Wo(@) = (x— A (= Ao [(@— B2+ CH" . [(@— B2+ 3", (3.5)

gdzieki + ...+ kpn+2-(i+...+1.)=noraz ki,...,km,l1, ..., 1l sq liczbami naturalnymi.

Twierdzenie 3.6 Niech dana bedzie funkcja wymiarna

gdzie wielomian W, (x) ma rozlad (3.5). Wiedy f(x) rozklada sie na ulmki proste postaci

a1 A1k (67951 Qm Ly
= e ... e —— 3.6
f(z) p— + o As Fot T (x_Am)kmﬂL (3.6)
N Bi1x + Y11 T B, T + Y1, . Br1T + vr1 n Bri, T + Yr1,.
(x—=DB1)2+C1  (z—=B1)?+C)h 7 (=B 4+C. T ((x - B2+ Gl

Przyktad 3.3 Niech
22 +2x+6
(x —1)(z —2)(z —4)

Wtedy na mocy twierdzenie 3.6 mamy

2?24+ 22+6 A n B n C
(x—D(x—-2)(z—4) x-1 z-2 =x-—4

sprowadzajge do wspdlnego mainownika i porownujgc liczniki otrzymujemy
2?4+ 20 +6=A(x —2)(x —4) + Bz — 1)(x —4) + Oz — 1)(z — 2).

wstawiajgce pierwiastki mianownika dostajemy rozwigzanie

A=3
B=-7
C=5
Przykltad 3.4 Niech k € N oraz a # 0.
/ 1 J |%Llln|ax+b|+c dla k=1
_ dr= .
(aa:+b)k mmﬁ—c dla k>1

Obliczajgc catke dokonalismy podstawienia t = ax + b.
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Przyktad 3.5 Niech k € N.

1
/ﬁdm = arctgx + c.
x

Niech teraz k > 1 )
def
I, = | —————dx.
¢ / @+ 1F

T otrzymujemy zaleinosé

catkujgc przez czecci iloczyn funkcji 1 4 ﬁ

I = 5 + 2kl — Ikt1),

@+1)

a stgd

P 2k—1,
LTk 2+ 12 2k

3.3 Calkowanie funkcji trygonometrycznych

Definicja 3.3 Funkcjq wymierna R(x1,...,x,) zmiennych x1, . .., x, nazywamy funkcje bedacq ilorazem dwdch wielamiandw

zmiennych x1,...,Ty.
Bedziemy przez R oznaczaé¢ funkcje wymierna.

Lemat 3.1 Niech R(cosz,sinx,tgx). Wiedy podstawienie t = tg § przeprowadza do funkcji wymiernej zmiennej t. Mamy

ponadto wtedy

_1-—t
COST = 777
. 2t
SINT = 1 (37)
tgx = 2t '
g  1—t2

_ 2

dx = —Htht

Lemat 3.2 Niech R(cos? x,sin’ x, sin x cos x). Witedy podstawienie t = tgx przeprowadza do funkcji wymiernej zmiennej t.

Mamy ponadto wtedy

2. _ 1
COS" T =

.2 t2

sin“x = —+—

: o (3.8)
SINTCOST = {777

_ 1

3.4 Calkowanie funkcji niewymiernych. Podstawienia Eulera

W paragrafie tym zajmiemy si¢ calkowanie szczegdlnego typu funkcji niewynmiernej, a mianowicie zawierajaca jako niewy-

mierrnosé pierwiatek kwadratowy z tréojmianu kwadratowego.

Przyktad 3.6

1
————dx = arcsinx + c.
/ V1—22

Przyklad 3.7 (Metoda wspdlczynnikéw nieoznaczonych) Niech W, (x) bedzie wielomiane stopnia n. Wtedy

1
/ —\%W"(x) = Vo1(2)Vaa? +bo + e+ A/ Jaz® t bzt e
ax? +bx +c ax? +bx+c

gdzie X i wspdlczynniki wielomaian Vy,_1 sa nieznane. Obliczamy je z zaleznosci

W, (z) =V,

n—

(z)(ax? +bx + ¢) + Vo1 (x)(azx + g) + A

Rozwazmy obecnie funkcje wymierna R(z, vax? + bx + ¢), gdzie R jest funkcja wymierng dwoch zmiennych. Podamy dla

niej ogdlne podstawienia Eulera.
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I Podstawienia Eulera (a > 0)

Podstawienie Pozostale dane

_ _ t>—c
Vari+br+c=t—/az NG

o /at?’ +bt++ac

e T JJat?+bt++ac
CLJ?2 + b.’I) +c= W

Mozna réwniez stosowaé podstawienie vax? 4+ bz + ¢ =t + /ax.

IT Podstawienia Eulera (¢ > 0)

Podstawienie Pozostale dane

Var? +br+c=axt++/c T = 2@:2717

dy = 2V bt yea gy

@)

VaE Tl o= Yy

Mozna réwniez stosowaé podstawienie vaxz? + bx + ¢ = xt — \/c.

ITI Podstawienia Eulera (ax? + bx + ¢ = a(x — \)(z — p) oraz (\ # )

Podstawienie Pozostale dane

Var? +br+c=tlx— N x = 7‘1’2@;"52
_ a(A—p)t
Var? +br +c= =54

Tego na wykladzie nie bylo — inne podstawienia.

Rozwazaé¢ bedzie funkcje wymierna postaci R(z,vax? + bx + ¢). Dokonujac odpowieniego podstawienia otrzymujemy

jednego typu funkcje

R(t,\/1—12)
R(t,\/t2 —1)

R(t, /12 + 1)

Mozemy dokona¢ wtedy odpowiednich postawien Eulera
V1 =12 = 2(1 + t), ewentualnie tw — 1;
V12 — 1 = z(t + 1), ewentualnie t — w;
VI2+1=zt+ 1, ewentualnie t — w.
Innymi podstawieniami, ktére mozna stosowaé¢ w tej sytuacji sa podstawienia
dla v/1 — t2 podstawienia ¢ = sin z, cos z, tgh
dla v/t2 — 1 podstawienia ¢t = cosh z, ——;

? cosz?

dla v/t? + 1 podstawienie sinh z, tg z.

3.5 Definicja calki Riemanna

Rozwazaé bedziemy przedzial domkniety [a, b], gdzie a < b.

Definicja 3.4 Podzialem P przedzialu [a,b] nazywamy skoriczony zbidr punktéw xg, 1, . .

a=x9g <21 <...< T, =b.
Zbiér wszystkich podzialdw przedzialu [a,b] bedziemy oznaczaé P([a,b]).

Definicja 3.5 Niech P = {xg,...,z,} € P([a,b]). Wtedy

A(P) 4 max Az,

1<ign

gdzie Ax; = x; — x;_1, nazywamy Srednicg podzialu P.
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Definicja 3.6 Niech Py, P> € P([a,b]). Méwimy, Ze podzial Py jest drobmiejszy miz podzial Py wtedy i tylko wtedy, gdy
P CP.

Uwaga 3.1 Relacja "podziat drobniejszy niz” jest zwrotna i przechodnia. Jest wiec porzgdkiem czesciowym.
Lemat 3.3 Dla kazdych dwdch podzialow istnieje podzial drobniejszy od kazdego z mich.

Rozwazaé bedziemy ograniczong funkeje f:[a,b] — R. Niech P = {xy,...,x,} € P([a,b]) bedzie ustalonym podzialem.

Niech ponadto M sup f(z), m % ir[lfb] f(zx) oraz M; def sup  f(x), my def nf fl@)ydlai=1,...,n.
ze|a,

z€[a,b] z€lxi_1,xi] TE[Ti—1,2i]

n
Definicja 3.7 Suma gérna (Darboux) funkcji f odpowiadajacg podziatowi P nazywamy liczbe U(f, P) réwng > M;Ax;.

i=1

n
Suma dolng (Darbouz) funkcji f odpowiadajgcq podziatowi P nazywamy liczbe L(f, P) réwng > m;Ax;.
i=1

1=

Definicja 3.8 Calkq gdrna Riemanna funkcji f na przedziale [a,b] nazywamy liczbe oznaczang

>
/ f2)dz inf  U(F,P). (3.14)

PeP([a,b])

Calkg dolng Riemanna funkcji f na przedziale [a,b] nazywamy liczbe oznaczang

b

/f(x)dxdéf sup U(f,P). (3.15)
S PeP([a,b])

Jezeli calka gorna i dolna Riemanna sg sobie rowne, to mowimy, Ze funkcje f jest calkowalna w sensie Riemanna na

przedziale [a,b] i oznaczamy f € R([a,b]). Wspdlng wartosé tych calek oznaczamy

/a " Ha)de.

3.6 Zadania
Zadanie 3.1 Pokazal, ze [ ﬁdw =z +V1+2? +ec

Zadanie 3.2 Pokazal, ze [ ﬁdw =hjz+vz?-1|+c
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Wyktad 4

2003.03.10 / 3h

4.1 Definicja catki Riemanna - Stieltjesa

Rozwazaé bedziemy przedzial domkniety [a, b], gdzie a < b.

Rozwazaé bedziemy ograniczong funkcje f:[a,b] — R. Niech P = {xg,...,x,} € P([a,b]) bedzie ustalonym podzialem.
Niech ponadto MY sup f(x), m® inf f(x) oraz M; ef sup  f(x), m; e inf fl@)ydlai=1,...,n.
z€la,b] z€(a,b] T€lwi_1,a;) T€lwi—1,4]

Niech a: [a,b] — R bedzie funkcja niemalejaca. Zdefiniujmy nastepujace pojecia

Ac; ¥ a(z;) — afzi_1) (4.1)
[](f7 P, Oé) défzn:MiAOéi (42)
=1
L(f, P, «) défimiAai, (4.3)
1=1
% %
/ fda = / f(z)da(z) poit U Pa) (4.4)
b b
/fda = /f(x)doz(x) def sup L(f, P, «). (4.5)
PeP([a,b])

a a

Obie calki nazywamy odpowiednio catka gérna i dolng Riemanna - Stieltjesa funkcji f wzgledem funkcji o na przedziale
[a,b]. Jezeli s one réwne, to ich wspdlng warto$é nazywamy calka Riemanna - Stieltjesa (ewentualnie Stieltjesa) funkeji f
wzgledem funkcji o na przedziale [a, b] (piszemy f € R(a, [a,b])) i oznaczamy ja

/ ' fdo.

Zauwazmy, ze calka Riemanna jest szczegdlnym przpadkiem catki Riemanna - Stieltjesa dla funkcji o =Id co zapisujemy
R(1d, [a,b]) = R([a, b])

Lemat 4.1 Zachodzg nastepujgce nieréwnosci
m(a(b) — a(a)) < L(f, P,a) < U(f, P,a) < M(a(b) — a(a)). (4.6)

SZKIC DOWODU.
Poniewaz m < m; < M; < M i Aq; > 0 wiec mAa; < m;Aa; < M;Aa; < MAq;. Sumujac wzgledem ¢ otrzymujemy
teze lematu.
O

Uwaga 4.1 Jezeli P bedzie dowolym podzialam i T dowolnym punktem odcinka [a,b], to przez P U {ZT} bedziemy oznaczad
podzial otrzymany poprzez dolgczenie punktu T.
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Twierdzenie 4.1 JezZeli podzial Py jest drobniejszy niz podzial P, to

L(f,Pl,CV) < L(faP27a) < U(fv-PZva) < U(f,Pl,CV). (47)
SzkiC DOWODU. Niech P, = P, U{Z}. Zakladajac, ze P, = {zg, 21,...,z,} dla pewnego n mamy
P, = {anxlw"7xi—1afaxia"'axn}-

Niech ponadto W; def sup  f(x), Ws et sup f(x), wy f inf f(z), wy = 4 inf f(z). Wtedy z wlasnosci kreséow
z€[Ti—1,T T€[T,x;] r€[z;—1,7] TE[T, 4]
mamy

L(f, Py,a) = L(f, Pr, @) = (w1 — m;) [(T) — a(i—1)] + (w2 — my) [a(z;) — (@) > 0
oraz
U(f, Pr,0) = U(f, P2, ) = (M; = Wh) [a(ZT) — a(zi-1)] + (M; = W2) [(zi) — ()] > 0.
Konczy to dowdéd w tym przypadku.
Jezeli mamy teraz dowolny podzial P, drobniejszy niz Pj, to istnieje takie & naturalne i istnieja skonczone ciagi punktow

2! tego odcinaka i podzialéw P! (I=1,...,k) taki, ze
P, P! =P u{zl}, P> = P u{a?},...,P* = PP LU {aF)} = P,.

Stosujac do kazdych dwdch to samo rozumowanie otrzymyjemy teze naszego twierdzenia.

O
Twierdzenie 4.2 Niech Py, P> bedg dowolymi podziatami. Wiedy
L(f, P1,0) < U(f, Py, ). (4.8)
SzKiCc DOWODU. Wsytarczy zastosowaé twierdzenie 4.1 do dowolnego podziatu jednoczesnie drobniejszego niz P; i Ps.
O

Whiosek 4.1

/bfdoz < /bfdoz. (4.9)

SzKIC DOWODU. Wystarczy skorzystaé z okreslenia catki Riemanna - Stieltjesa, nieréwnosci (4.8) i wlasnosci kreséw.
a

Twierdzenie 4.3 (Warunek konieczny i dostateczny catkowalnosci) f € R(a, [a,b]) wtedy i tylko wtedy, gdy dla do-
wolnego € > 0 istnieje P € P([a,b]) taki, Ze
U(f,P,a)— L(f,P,a) <e. (4.10)

SZKIC DOWODU.
(Dostatecznosé,
Z definicji catki Riemanna - Stieltjesa mamy

Vrep(ap) L((f, P a) < /fda /fda<U(f,P7a).

Stad dla dowolego & > 0 jezeli U(P, f,a) — L(P, f,a) < €, to tym berdziej 0 < dea — ifda < . Przechodzac z granica z
do zera otrzymujemy teze.
(Koniecznosé)
Niech € > 0 Istnieja takie podzialy P, i Py, ze
Ut Pre) - [ o<
2
€
/fda—U(fv-PQa ) 5

Biorac dowolny podzita drobniejszy niz P; i P, otrzymujem dla niego te same nieréwnos¢, a poniewaz catka dolna i gbrna sa
rowne dodajac stronami nieréwnosci otrzymujemy teze.
a
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Twierdzenie 4.4 (i) Jezeli nierdwnos¢ (4.10) zachodzi dla pewnego podzialu P, to zachodzi dla podzialu drobniejszego z tym
samym €.
(i) Jezeli nieréuwnodé (4.10) zachodzi dla podziatu P = {xg,x1,...,x,} i dla punkty s;,t; sq dowolymi punktami z odcinak

[@i_1,24], to
STIf(si) = £(t)| Ay <ce.
=1

(ii1) Jezeli f € R(a, [a,b]) oraz spelnione sq zalozenia (i), to

N b
Zf(ti)Aai —/fda <e.
i=1 J

SZKIC DOWODU.
(i) Wynika z nieréwnosci (4.7).
(ii) Wynika z faktu, ze |f(s;) — f(t;)] < M; —my;

4.2 Klasy funkcji catkowalnych w sensie Riemanna - Stieltjesa

Niech dany bedzie przedzial domkniety [a,b], gdzie a < b oraz ograniczona funkcja f:[a,b] — R i niemalejaca funkcja
a:la,b] — R.

Twierdzenie 4.5 Jezeli f jest funkcjq ciggla na odcinku [a,b], to f € R(a, [a,b]).
SZKIC DOWODU. Mamy
1. f jest jednostajnie ciagla, czyli Ves03550Va,yelap)|T —yl <0 = [f(2) — f(y)] <€
2. « jest ograniczona wiec Veso3,50 [(b) — a(a)]n < e

Niech ¢ > 0. Rozwazmy 7 > 01 > 0 o wlasnodciach [a(b) — a(a)]n < € oraz V, yejaplz —yl < 6 = |f(z) — f(y)| < n.
Bierzemy podzial taki, ze Az; < §. Wtedy M; — m; < 7. Stad teza.

O
Twierdzenie 4.6 Jezeli f jest monotoniczna na przedziale [a,b] i o jest ciggla, to f € R(a, [a,b]).
SZKIC DOWODU. Mamy
1. a ma wlasno$é¢ Darboux, wiec V,enIpepAay; = M
2. Niech f = |f(b) — f(a)|+ 1, @ = a(b) — a(a) + 1
Niech € > 0. Rozwazmy ng i podzial P o wlasnoéciach ng = [g] +11iAq; = %Oa(a). Stad teza.
a

Twierdzenie 4.7 Niech [ bedzie funkcjg ograniczong i majacq tylko skoriczong ilo$é punktdw niecigglosci na przedziale [a, b]
i niech « bedzie ciggla w kazdym z punktéw, w ktérych nieciggla jest funkcja f. Wtedy f € R(a, [a,b]).

Szkic powoDU. Niech € > 0. Niech F zbiorem punktéw nieciagloéci funkeji f. Jezeli E = (), to teza wynika z twierdzenia

4.5. Niech teraz E # () i niech n = card E. Zalézmy, ze zbiér E zostal uporzadkowany przez relacje nie wickszy niz. Oznaczmy

przez TZ sup |f(z)|ia2 a(b) — a(a) + 1. Dla kazdego =; € E (i = 1,...,n) wybieramy punkty v;, w; o wlasnogciach

z€(a,b]

1. v <y < wy;
2. a(w;) — afx;) < g 1 a(x;) — a(v;) < g7 (2 ciaglodei);
3wy <vigpdlai=1,....,.n— 1
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Wtedy

n

S le(ws) — a(e)] < -

i=1

Vicicj<nlvi, wi] N [vj,w;] =

3

Niech K = [a,b] — | ]v;, ws]. K jest zwarty i funkcja f na K jest ciagla, a wiec jednostajnie ciagla. Stad weZzmy ¢ > 0 takie,

_ i=1
ze
Vawerle =yl < 3= (@) = FW)] < 0=
Rozwazmy podzial P = {zg, z1,...,2m} o wlasnosciach
1. vj,w; € Pdlal <1< n;
2. z¢Pdlal<i<nizée€v,w]
Joaxi1 v, => A <ddlal<lI<mil<i<n (zwlasnosci Darboux).
Dla tego podziatu mamy
1. Mij—my<2Tdlal=1,...,m;
2. M —my < zoilexy #Fvydlai=1,...,nil=1,...,m.
Wtedy
U(f,P,a)— L(f,p,a) = ( (M; — m;)Aa; < Z Aoy + 2T Z Aw;
L 175Ul la:l 1=v; O 1705 L1 =v;
< ;OLKK Aaq; +2TE < %[ a(b) — afa)] —&-g <e

d

Uwaga 4.2 Zwrocimy uwage, ze pozbycie sie warunku na monotonicznos$é powoduje zmniejszenie sie liczby punktow niecig-

gtosci, poniewaz funkcja monotoniczna ma co najwyzej przeliczalng ilosé punktow niecigglosci.

4.3 Zadania
Zadanie 4.1 Udowodnié twierdzenie 4.4 (iii)

Zadanie 4.2 Policzy¢ z definicji caltke Riemanna - Stieltjesa z funckji stalej.
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Wyktad 5

2003.03.17 / 3h

5.1 Klasy funkcji calkowalnych w sensie Riemanna - Stieltjesa c.d.

Niech dany bedzie przedzial domkniety [a,b], gdzie ¢ < b oraz ograniczona funkcja f:[a,b] — R i niemalejaca funkcja
a: [a,b] — R.

Twierdzenie 5.1 Niech f € R(a,[a,b]) oraz niech dla dowolnego x € [a,b] zachodzq oszacowania m < f(x) < M. Niech
ponadto ¢ bedzie funkcjq ciggla na przedziale [m, M| oraz niech hd§f¢ o f na przedziale [a,b]. Wiedy h € R(a, [a,b]).

Uwaga 5.1 ZaloZenie o cigglosci funkcji ¢ jest istotne, co pokazuje nastepujgcy przykiad.

Przyklad 5.1 Rozwazmy funkcje Riemanna zdefiniowang wzorem

{0 dlax g Qva=0
R(f”){l dlax e Q\{0} Az =TANWD (n,m)=1.

m

Funkcja Riemanna jest ciggla w zbiorze liczb niewymiernych i zerze. Rozwazmy funkcje g zadang wzorem

(x){l dla > 0
g 0 dlaz=0

Wowczas zlozenie funkcji Riemanna i funckji g jest funkcjg Dirichleta. Udowodnimy péiniej, zZe funkcja Riemanna jest

funckjq catkowalng w sensie Riemanna na kazdym odcinku domknietym.

5.2 Wlasnosci catki Riemanna - Stieltjesa

Niech dany bedzie przedzial domkniety [a, b], gdzie a < b oraz ograniczone funkcje f, f1, f2: [a,b] — R i niemalejace funkcje

a,aq, a9t [a,b] — R.

Twierdzenie 5.2 (Wiasnosci catki Riemanna - Stieltjesa) Niech f, f1, fo € R(a, [a,b]), c € R. Wtedy

b b
c~f€9‘{(a,[a,b])/\/ c'fda:c~/ fda (5.2)
b b b
fit e o)A [ 7+ fda= [ fda+ [ fada (5.3)
b b
Vaela f1(z) < fa(x) =>/ frda </ fado (5.4)
b c b
¢ €la,bl= | € Rla, [a,c]) A f € Ra, [c,b})/\/ fda:/ fda—i—/ fda (5.5)
b
ImerVeelap|f(@) < M = / fda] < M(a(b) — ala)) (5.6)
b b b
e R(an, [a,b) A f € Rlas, [a,5]) = f € Rlar + as, [a,b)) /\/ fd(an + az) :/ fdas +/ fdas (5.7)
a b a a b
CER+=>f6§R(c-oz,[a,bD/\/ fd(c-a):c-/fda (5.8)
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Twierdzenie 5.3 Niech f,g € R(a, [a,b]). Wiedy
f-g9€R(,a,b]) (5.9)

Twierdzenie 5.4 Niech f € R(w, [a,b]). Wtedy

b
1] € 9(a, [a, b]) A </ \f|da (5.10)

/abfda

Definicja 5.1 Jednostkowq funkcjg schodkowa (funkcja Heaviside’a) nazywamy funkcje postaci

e <
H(x)d:f{o dlax <0

. (5.11)
1 dlax>0

Twierdzenie 5.5 Nich s €]a,b[, f:]a,b] — R bedzie ograniczong oraz ciggla w s i a(x) = H(x — s). Wtedy
b
/ fda = f(s). (5.12)

o0
Twierdzenie 5.6 Niech dany bedzie cigg {a, € Ry : n > 1} taki, ze > a, jest zbiezny. Niech ponadto dany jest cigg
n=1

{sn :m > 1} Cla,b] punktéw parami réznych i niech
alx) défZanH(x — Sp)- (5.13)
n=1

Niech f bedzie funkcjq ciggle na [a,b]. Wtedy
b o
/ fdo =" anf(sn). (5.14)

n=1

Twierdzenie 5.7 Niech « bedzie funkcjq niemalejgca takq, Ze o € D([a, b)) i jej pochodna o € R([a,b]). Niech f:[a,b] — R
bedzie funkcjqg ograniczong. Wtedy nastepujgce warunki sq réwnowazne

(i) f € R(a, [a,b]),
(i)f - o' € R([a,b]).

W tym przypadku zachodzi réwnosé

/a " fda = / ’ f(@)a (2)d. (5.15)

5.3 Zadania

Zadanie 5.1 Udowodnic, ze funkcja Riemanna jest ciggla w zbiorze liczb niewymiernych i zerze.

Zadanie 5.2 Udowodni¢ wilasnosé (5.8).
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Wyklad 6

2003.03.24 / 3h

6.1 Zamiana zmiennych w calce Riemanna - Stieltjesa

Twierdzenie 6.1 (Zamian zmiennych) Niech ¢:[A, B] — [a,b] bedzie surjekcjq rosngeq. Niech o bedzie funkcja niema-
lejaca na [a,b] i niech f € R(q, [a,b]). Okreslamy funkcje 3, g: [A, B] — R wzorami

B=aopNg=foqp. (6.1)

/A g = / ' fda (6.2)

Uwaga 6.1 Biorgc o =Id otrzymujemy twierdzenie o zamianie zmiennych w calce Riemanna.

Wtedy g € R(B, [A, B]) oraz

Whiosek 6.1 Niech ¢:[A, B] — [a,b] bedzie surjekcjq rosngcq takq, ze ¢ € D([A,B]) i ¢' € R([A, B]) oraz niech f €
R([a,b]). Wtedy oraz

b B
/f f(z)dz ::j/ (@) (x)de (6.3)
a A

6.2 Klasy funkcji calkowalnych w sensie Riemanna — twierdzenie Lebesgue’a
Uwaga 6.2 Jezeli I bedzie odcinkiem , to jego diugosé bedziemy oznaczad |I|.

Definicja 6.1 Mdwimy, ze zbior A C R jest zbiorem miary zero wzgledem miary Lebesgue’a wtedy i tylko wtedy, gdy dla
dowolnego € > 0 istnieje pokrycie {I, : n > 1} odcinkami zbioru A tzn. A C{I, : n > 1} takie, Ze

oo

Z |I,| < e.

n=1
Lemat 6.1 (Wlasno$ci zbioréw miary zero) (i) Dowolny podzbidr zbidr miary zero jest zbiorem miary zero.

(i) przeliczalna suma zbioréw miary zer jest zbiorem miary zero.
Przykltad 6.1 Zbior jednopunktowy jest zbiorem miary zero.
Przykltad 6.2 Zbior przeliczalny jest zbiorem miary zero. W szczegdlnosci zbior liczb wymiernych Q jest zbiorem miary zero.

Definicja 6.2 (Konstrukcja zbioru Cantora) Niech Iy = [0,1]. Okreslamy indukcyjnie dla n € N zbiory I,, nastepujgco

1 2 1
I,=-I, ,U(Z+=1,.]). 6.4
31U (5 + 300 (64)
Niech -
ct ﬂ I, (6.5)
n=0

Zbior C nazywamy zbiorem Cantora. Jest on nieprzeliczalny.!

TPoréwnaj wyklady ze Wstepu do matematyki
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Przyktad 6.3 Zbior Cantora jest zbiorem miary zero.
Przykltad 6.4 Przedzial zawierajgcy co najmniej dwa punkty nie jest zbiorem miar zero.

Definicja 6.3 Mowimy, Ze wlasnos¢ zachodzi w zbiorze liczb rzeczywistych prawie wszedzie wtedy i tylko wtedy, gdy zbior

punktéw w ktdrych Jwlasnosé ta nie zachodzi jest zbiorem miary zero.

Twierdzenie 6.2 (Lebesgue’a) Niech f:[a,b] — R bedzie funkcjq ograniczong. Wtedy nastepujace warunki sqg réwnowazne
(i) f € R([a,b])

(ii) f jest prawie wszedzie ciggla na [a,b].

Whiosek 6.2 Niech f,g € R([a,b]). Wiedy o ile prawie wszedzie funkcje f i g sq réwne, to ich calki sq réwne.

6.3 Calkowanie (catka Riemanna), a rézniczkowanie
Niech a < b, f:[a,b] — R taka, ze f € R([a,b]).

Definicja 6.4 Okreslamy funkcje Fy:[a,b] — R nastepujgco
def ¢
VectanFr0) " [ fa)da. (6.6)

a
Przyjmujemy jednoczesnie [ f(x)dx = 0.

a

Twierdzenie 6.3 Funkcja Fy jest jednostajnie ciggla na [a,b].

Twierdzenie 6.4 (Zasadnicze twierdzenie rachunku rézniczkowego i catkowego) Niech funkcja f bedzie ciggla w

punkcie p € [a,b], to Fy jest réiniczkowalne w p oraz F]’c(p) = f(p).

Whiosek 6.3 Jezeli f € C(|a, B]), gdzie —co < a < 3 < +00 oraz a €], B] i Fu(t) = fat f(z)dz, to wtedy dla dowolnego
b €la, 8| i funkcja F, € C*([a,b]) oraz F. = f.

Twierdzenie 6.5 (Zasadnicze twierdzenie rachunku catkowego/ Newtona - Leibniza) Niech f € R([a,b]). Jezeli
istnieje F' € D([a,b]) taka, ze F' = f, to

b
/ f(z)dz = F(b) — F(a). (6.7)

Uwaga 6.3 Twierdzenie to mozna przy pomocy funkcji pierwotnej wypowiedziec:

Jezeli funkcja f calkowalna w sensie Riemanna posiada funkcje pierwotng na przedziale [a,b], to spelniony jest warunek

(6.7).

Twierdzenie 6.6 (Calkowanie przez czeéci) Niech F,G € D([a,b]) i niech F' = f € R([a,b]) oraz G' = g € R([a,b]).
Wtedy

b b
/F@Mmsz@mm—ﬂ@m@—/f@Gmw. (6.8)

6.4 Zadania

Zadanie 6.1 Udowodnié, zZe |I,,| = (%)n, gdzie zbior I, pochodzi z konstrukcji zbioru Cantora.

Zadanie 6.2 (Twierdzenie o wartos$ci $redniej rachunku catkowego) Niech a < b oraz f € C([a,b]). Udowodnié, zZe

wtedy
b
Secunf(©) = 5= [ Fa)da. (6.9)

a
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Zadanie 6.3 (Twierdzenie o wartosci $redniej I dla catki Riemanna - Stieltjesa) Niech a < b, a:[a,b] — R bedzie

funkcjg niemalejgcq oraz f:|a,b] — R takq funkcjg ograniczong, Ze f € R(a, [a,b]). Udowodnié, ze wtedy

3ue[ inf {F@)h swp {( x)}]/f Jdz = (b—a)p. (6.10)

z€la,b]

Zadanie 6.4 (Twierdzenie o warto$ci $redniej II dla catki Riemanna - Stieltjesa) Niech a < b, a:[a,b] — R be-
dzie funkcjq niemalejgcg oraz f, g: [a,b] — R takimi funkcjgami ograniczonymi, ze f, g € R(«, [a,b]) oraz funkcja g ma stale

ten sam znak. Udowodnié, Ze wtedy

z€la,b]

b
HME[ inf (7@}, sup {f( w)}]/f dI:H/f(x)dI- (6.11)

Zadanie 6.5 (Twierdzenie o warto$ci $redniej TA dla catki Riemanna) Niech a < b i f,g:[a,b] — R, gdzie f jest
jest funkcjg nierosngcq i nieujemng, a g € R([a,b]). Udowodnié, ze wtedy

b
ectan) [ F@g(@)ds = f(a) [ gla)da. (6.12)

a

Zadanie 6.6 (Twierdzenie o wartosci $redniej IB dla calki Riemanna) Niech a < b i f,g:[a,b] — R, gdzie f jest
jest funkcjq niemalejgca i nieujemng, a g € R([a,b]). Udowodnié, ze wtedy

b

b
Secta / f(@)g(@)dz = F(b) / o(z)de. (6.13)
13

a

Uwaga 6.4 Dwa ostanie wzory naszg nazwe wzorow Bonneta.

Zadanie 6.7 (Twierdzenie o wartosci $redniej II dla catki Riemanna) Niech a < b i f,g:[a,b] — R, gdzie f jest
jest funkcjg monotiniczng, a g € R([a,b]). Udowodnié, ze wtedy

b b

Hﬁe[a,b]/f( )a( jg Ydz + f(b /g (6.14)

a 13
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Wyklad 7

2003.03.31 / 3h

7.1 Calki niewlasciwe Riemmana

Calki niewlasciwe ze wzgledu na nieograniczony przedzial.

Definicja 7.1 Niech f:]a,+o0o[— R. Zalézmy, ze dla dowolnego b > a funkcja f jest calkowalna w sensie Riemanna na [a, ]

+oo
(f € R([a,b]). Méwimy, ze calka niewlasciwa [ f(x)dx jest zbieina (f jest calkowalna) wtedy i tylko wtedy, gdy istnieje

b
skoriczona granica , 1i5[_1 [ f(z)dx. Piszemy wtedy

+oo b
/f(ﬂ?)dz: lim /f(x)da;.

b——+o0

Definicja 7.2 Niech f:]—o00,b] — R. Zalézmy, ze dla dowolnego a < b funkcja f jest calkowalna w sensie Riemanna na [a, b]
b
(f € R([a,b]). Méwimy, ze calka niewlasciwa [ f(z)dz jest zbieina (f jest calkowalna) wtedy i tylko wtedy, gdy istnieje

— 00

b
skoticzona granica lim [ f(x)dz. Piszemy wtedy
a——00 a

b b
/ f(z)dz = aEr_noo f(z)dz.

Calki niewlasciwe ze wzgledu na mozliwa nieograniczono$é funkeji (odcinek bez kofica).

Definicja 7.3 Niech f:[a, Bl— R. Zaldimy, ze dla dowolnego a < b < B funkcja f jest calkowalna w sensie Riemanna na

B
la,b] (f € R([a,b]). Méwimy, ze calka niewtasciwa [ f(x)dx jest zbiezna (f jest calkowalna) wtedy i tylko wtedy, gdy istnieje
b

skoticzona granica lim [ f(z)dz. Piszemy wtedy
b—B~ 4

B b

/f(;v)d:r = bEIlgl* f(x)dx.

Definicja 7.4 Niech f:]A,b] — R. Zaldéimy, ze dla dowolnego A < a < b funkcja f jest calkowalna w sensie Riemanna na
b

[a,b] (f € R([a,b]). Méwimy, ze calka niewlasciwa [ f(x)dxz jest zbieina (f jest calkowalna) wtedy i tylko wtedy, gdy istnieje
A

b
skoriczona granica lim+ [ f(z)dz. Piszemy wtedy

a— a

/bf(x)dx ZGEIL/bf(x)dx.
A a
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—+oo

Przyktad 7.1 Calka [ w%dx jest zbiezna dla o > 1 i rozbiezna dla o < 1.
1

1

Przyktad 7.2 Calka [ gﬂ%da: jest zbiezna dla o < 1 1 rozbiezna dla o > 1.
0

Twierdzenie 7.1 Jezeli f € R([a, B)]), to calka niewlasciwa istnieje i jest réwna calce Riemanna po przedziale [a, B).

Wizystkie twierdzenia bedziemy formulowaé tylko dla przypadku przedzialu [a,w[, gdzie albo w = +oo albo w jest
skoniczone, ale funkcja w punkcie w ma granice nieskonczona. Bedziemy zakladaé, ze dla dowolnego b €la,w[ mamy f €
R([a,0]).

Twierdzenia dla dla przedzialu |w,b], gdzie w = +c0 albo w jest skoniczone sa analogiczne.

Twierdzenie 7.2 (WlasnoSci calek niewlasciwych) Zaldzmy, ze istniejq calki niewla$ciwe funkcji fi, fo, f.
(i) Wtedy

/ (af(@) + Ba(x))da = / fi(@)da + 8 / fol@)da (7.1)

Veelaol / f(@)de = / fw)dz + / f(@)da (7.2)

(i) Jezeli spelnione sq warunki ¢: [, y[— [a,w][, jest surjekcjq rosngceq takg, ze ¢ € D([a,]) i ¢’ € R([e,b]) dla dowolnego
b z przedzialu |a, ], to wtedy

/(f 0 ¢)(t)¢' (t)dt istnieje oraz /(f 0 ¢)(t)g'(t)dt = /f(x)dw (7.3)

(iii) Niech F,G:[a,w|— R takie, ze F,G € D([a,w|) oraz funkcje f = F',g = G' € R([a,b]) dla dowolnego a < b < w i
istnieje skoriczona granica blim_ F(b)G(b). To wtedy istnieje calka niewlasciwa [ F(z)g(x)dx wtedy i tylko wtedy, gdy istnieje

a

catka niewlasciwa ff(w)G(:c)dx. Zachodzi ponadto wzor
/F(:z:)g(x)dx = lim F(b)G(b) — F(a)G(a) — /f(x)G(x)dx (7.4)

b—w™
a

Twierdzenie 7.3 Calka niewlasciwa z funkcji nieujemnej f jest zbieina wtedy i tylko wtedy, gdy Fy jest ograniczona na

[a,b].

Twierdzenie 7.4 (Kryterium poréwnawcze) Niech 0 < f < g na przedziale [a,w[. Wtedy
w w

(i) jezeli calka niewlasciwa [ g(x)dz jest zbiezna, to calka niewlasciwa [ f(x)dx jest zbiezna.
a a

w w
(ii) jezeli calka niewlasciwa [ f(x)dx jest rozbiezna, to calka niewlasciwa [ g(x)dx jest rozbiezna.
a a

+oo +oo
Przyktad 7.3 Calka [ e dy jest zbiezna, bo zbiezna jest calka [ e *dx oraz 0 < e < e %dx na przedziale [1, +00].
1 1

—+o0 +oo
Przyktad 7.4 Calka { de jest zbiezna, bo zbiezna jest catka 1f r~z2dx.

Twierdzenie 7.5 Niech w bedzie skoticzone. Niech f,g:[a,w[— R bedq funkcjami cigglymi oraz g(x) # 0 dla pewnego
sgsiedztwa S~ (w, d), gdzie § > 0. Zaldzmy, Ze istnieje skoriczona granica

lim L(x) =
a—w- g(z)
Wtedy
(i) jezeli A # 0, to calki niewlasciwe sq jednoczesnie albo zbiezne albo rozbiezine.
b b
(ii) jezeli A =0, to o ile catka niewlasciwa [ g(x)dx jest zbiezna, to zbiezna jest calka [ f(z)dx.
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Twierdzenie 7.6 (Calkowe kryterium zbiezno$ci szeregu) Niech funkcja f:[1,+oo[— R bedzie nieujemna i nierosng-
ca oraz dla dowolnego b € [1,+00[ spelniony jest warunek f € R([1,b]). Wiedy nastepujgce warunki sq réwnowazne
(i) > f(n) jest zbieiny
n=1
+oo
(ii) | f(x)dz jest zbiezna.
1
Definicja 7.5 Calke niewlasciwg [ f(z)dx nazywamy bezwzglednie zbieing wtedy i tylko wtedy, gdy calka niewlasciwa

f |f(z)|dx jest zbiezna.

Definicja 7.6 Niech f bedzie dowolng funkcjq. Zdefiniujmy funkcje cze$é nieujemng i niedodatniq
4 det £+ |f]
/ 2
_aef —f +f]
g =

Lemat 7.1 Dla dowlnej funkcji f = f* — f~ oraz |f| = fT+ f~.
Uwaga 7.1 Obie funkcje sq¢ nieujemne.
Twierdzenie 7.7 Calka niewlasciwa bezwzglednie zbiezna jest zbiezna.

Twierdzenie 7.8 (Kryterium poréwnawcze zbiezno$ci bezwzglednej) Niech |f| < g na przedziale [a,w[. Wtedy, je-

w w
zeli calka niewla$ciwa [ g(z)dx jest zbieina, to calka niewlasciwa [ f(x)dx jest bezwzglednie zbiezna.
a a

Przyktad 7.5 Calka JrfooSi%dx jest zbiezna, lecz nie jest bezwzglednie zbiezna.
0
Twierdzenie 7.9 (Kryterium Abela - Dirichleta) Jezeli funkcje f, g: [a,w[— R spelniajg zalozenia
(i) [a,w[> b — ff(a:)dx jest ograniczona;
(ii) g jest mon;tom'czna i tg{?— g(t) = 0;
albo "
(i) calka [ f(z)dx jest zbiezna;

a
(i) g jest monotoniczna i ograniczona,

b
to calka [ f(x)g(z)dx jest zbiezna.

+oo

Przyktad 7.6 Calka [ Siw%dx, gdzie a > 0, jest bezwzglednie zbiezna dla o > 1 oraz zbiezna dla 0 < o < 1.

—+oo

Przyktad 7.7 Calka [ sin(z®)dx jest zbiezna.
0

7.2 Zadania

Zadanie 7.1 Udowodnié, ze f* = max{f,0} oraz f~ = max{—f,0}.
Zadanie 7.2 Udowodnié¢ twierdzenie 7.5 (ii).

Zadanie 7.3 Niech f:[—a,a] — R, gdzie a > 0 bedzie funnkcja nieparzystq takq, ze f € R([—a,a]). Udowodnié, Ze
J f(z)dz = 0.

Zadanie 7.4 Niech f:[—a,a] — R, gdzie a > 0 bedzie funnkcja parzystq takg, ze f € R([—a,a]). Udowodnié, ze [ f(x)dx =

2 [ f(z)dz.

0
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Wyklad 8

2003.04.07 / 3h

8.1 Calki niewlasciwe Riemmana zbiezne w sensie wartosci gléwnej
+o00
Definicja 8.1 Niech f:R — R oraz dla dowolnych a < b mamy f € R([a,b]). Mowimy, ze calka niewlasciwa [ f(z)dx jes

— 00

c —+oo
zbiezna wtedy i tylko wtedy, gdy dla dowolnego ¢ € R calki [ f(x)dz i [ f(x)dz niewlaSciwe sq zbieine. Piszemy wtedy

— 00

. . .
/ Fx)dz S / F(z)dz + / F(x)dz. (8.1)

Uwaga 8.1 NaleZy podkreslic, Ze trzeba udowodnié, zZe definicja nie zalezy od wyboru punktu c.

+oo
Definicja 8.2 Niech f:R — R oraz dla dowolnych a < b mamy f € R([a,b]). Méwimy, ze calka niewlasciwa [ f(x)dx jest
zbiezna w sensie wartosci glownej Cauchy’ego wtedy i tylko wtedy, gdy istnieje skoriczona granica
R
RETOO / f(x)dx. (8.2)
-R
“+oo
Oznaczamy jej warto$é przez V.P. [ f(x)dx.
Przyktad 8.1 Rozwazmy funkcje f:R — R okreslong wzorem
1 dla x>0
x) = .
J(@) {—1 dla x <0
R 0
Wtedy dla dowolnego R > 0 mamy [ f(z)dz = R oraz [ f(z)dz = —R, a wicc obie calki niewlasciwe sq rozbiezne, ale
0 -R
R “+o0
[ f(@)dz=0istgd V.P. [ f(z)dx=0.
—R —o0
Definicja 8.3 Niech f:[—a,a] — R, gdzie a > 0. Zdefinujmy cze$¢ parzystq i nieparzystq funkeji f.
def f(z) + f(—2
Fa)= % (8.3)
def f(x) — f(—x
N (z)= % (8.4)
Lemat 8.1 Niech f:[—a,a] — R, gdzie a > 0. Wtedy f = fF + fV.
+o00
Twierdzenie 8.1 Niech f:R — R oraz dla dowolnych a < b mamy f € R([a,b]). Calka niewlasciwa [ f(x)dx jest zbiezna

—+oo
w sensie wartosci glownej Cauchy’ego wtedy i tylko wtedy, gdy jest zbieina calka niewlasciwa [ P (x)dx.
0
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Definicja 8.4 Niech f:[a,c[U]c,b] — R, gdzie a < ¢ < b. Niech dla dowolnych ay,by takich, ze a < a1 < ¢ < by < b mamy
b

I € R([a,a1]) NR([b1,b]). Méwimy, ze calka [ f(x)dx jest zbieina w sensie wartosci gldwnej wtedy i tylko wtedy, gdy istnieje
a

skonczona granica

6—0+

c—9 b
lim /f(x)dx—i—zr/éf(x)dx (8.5)

b
Oznaczamy wtedy jej warto$é przez V.P. [ f(z)dx.
a

lal”

b 0 b
Przyktad 8.2 Niech a <0 <b. Wtedy V.P. [ 2dz = In %, chociaz nie istniejq catki [ Ldx i [ Ldx.
a a 0

8.2 Wazne calki niewlasciwe

Definicja 8.5 Calkq Fulera II rodzaju lub funkcjg gamma nazywamy funkcje

+oo
10, +oofi— T(z) %! / =Tt gy, (8.6)
0

Uwaga 8.2 Mamy tutaj doczynienia z nieskoriczonym przedzialem calkowania oraz osobliwoScia w zerze (warto$é funkcji

dagzy do nieskoriczonosci).

Definicja 8.6 Calkq Eulera I rodzaju lub funkcjg beta nazywamy funkcje

1
(p,q) 3]0, +0o0[x]0, +oc[— B(p, q) déf/a:p_l(l — )1 dx (8.7)
0
Definicja 8.7 Calkq Fresnela nazywamy calke
“+o0
/ sin(x?)dz. (8.8)
0

Lemat 8.2 Cualka Fresnela jest zbiezna.

8.3 Funkcja logarytmiczna (wg Kleina) i wykltadnicza — inaczej

Przedstawimy inna definicje funkcji logarytmicznej i wykladnicze;j.
Niech a < b1i f:]a,b] — R bedzie funkcja ograniczona oraz f € R([a, b]).
Przyjmujemy nastepujaca definicje.

/a Fz)dz ¥ — /b fx)dz. (8.9)
b a

Definicja 8.8 Funkcje

o [1
}0,+oo[9x»—>lnxd:f/¥dt (8.10)
1

nazywamy logarytmem naturalnym.

Twierdzenie 8.2 (Wlasno$ci logarytmu) (i) Funkcja okreslona na 10, +00[;
(ii) In1 = 0;

(i) logarytm naturalny jest funkcjq rosngeq;

(i) In(zy) = Inzx + lny;

(iv) Ina™ =nlna;
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n n
(iv)’ In (H al> =5 Ina;
=1 =1
(v)Inl=—Ina;

(vi) In(]0, +o0]) = R.
Definicja 8.9 Funkcje odwrotng do logarytmu naturalnego tzn.

exp(z) Y(lnz)~! (8.11)
nazywamy funkcjg wykladniczg.

Twierdzenie 8.3 (Wlasno$ci funkcji wyktadniczej) (i) exp: R —]0, +o0;
(i) (expz)’ = expx;
(iii) exp0 = 1;
(iv) exp(x + y) = expx - expy;
(i) exp(na) = (expa)";

n n
(i)' exp (£ ) = Hexpan

i=1 =1

_

(v) exp(—a) = oz

Definicja 8.10 Wrowadzmy liczbe e nastepujgco

e Y exp(1). (8.12)
Twierdzenie 8.4 Mamy nastepujgcg rownosé
¢e=e, (8.13)
gdzie e = lim (1 + %)"

Uwaga 8.3 Udowodnimy w nastepnym twierdzeniu znacznie wiecej. Mianowicie, Ze poprzednie definicje funkcji logarytmicz-

nej © wykladniczej (za pomocq szeregu) sq identyczne z obecnymi (za pomocq calki).
Twierdzenie 8.5 Niech f € D(R) spelnia warunki f'(z) = f(z) i f(0) = 1. Wtedy f(z) = exp(z).
Uwaga 8.4 Jezeli wiemy,' ze (e®) = €%, to powyzisze twierdzenie orzeka, Ze funkcja wykladniacza wprowadzona w tym
S} ]
paragrafie jest tym samym co definicja e* przy pomocy szeregu potegowego tj. postaci e = > ””k—]:
n=1
Definicja 8.11 Potegq ogdlng o podstawie a > 0 nazywamy funkcje
o def
R>z— a” = exp(z-1lna) (8.14)
Definicja 8.12 Funkcjg potegowq nazywamy funkcje
10, 4[> x +— = e exp(a-Inz), (8.15)
gdzie a € R.
Definicja 8.13 Niech a > 0 i a # 1 funkcjg odwrotng do potegi ogdlnej nazywamy funkcjg logarytmiczng o podstawie a tzn.

def -1

log, z = (a”) (8.16)

Twierdzenie 8.6 (Wlasno$ci potegi ogélnej) (i) a’ = 1;

(ii) (a®) = a”Ina.

Twierdzenie 8.7 (Wtasnosci funkcji potegowej) (i) 278 =2 . 2F;
(ii) 2° = 1;

(iti) z= = L;

(iv) (%) = ax*~1.

1O tym przkonamy si¢ juz niedtugo.
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8.4 Calkowanie funkcji o wartosciach wektorowych — funkcje wektorowe

Rozwazamy R?, gdzie d > 1.

Niech &,y € R™ wtedy iloczyn skalarny dwoch wektoréw oraz diugosé wektora mozemy okresli¢ nastepujaco

(8.17)

—yy def e
I1Z] = V(@0 2)

(8.18)

Niech A:R% — R92 bedzie odwzorowaniem liniowym (reprezentuje je macierz A = [a;;]1<i<ds,1<j<d,) 1 niech & € R%.

1
Wtedy A - 7 jest wektorem z R% | ktérego wspétrzedne zdefiniowane sa réwnosciami (A - %); = Y ajpr, dlaj=1,..., ds.

n=1

Lemat 8.3 Niech dane bedg wektory T i y. Wowczas spelniona jest nieréwnosé Schwarza
[Zogl <12 - |41l (8.19)

Definicja 8.14 Funkcjg wektorowg f nazywamy odwzorowanie f [a,b] — RY, gdzie

—

f@) = (f1(@®), -, fa(t)) (8.20)

oraz dla dowolnego i =1,...,d f; sq funkcjami z [a,b] w R.

8.5 Zadania
Zadanie 8.1 Udowodnié, Ze fP jest funkcjq parzysta, a f~ jest funkcjg nieparzystq.

Zadanie 8.2 Niech x > 0. Udowodnié, Ze

T(z +1) = 2T(x) (8.21)
ri1) =1 (822)
T(n+1)=n! dlaneN (8.23)
Zadanie 8.3 Niech p,q > 0. Udowodnié, ze
B(p,q) = B(q,p) (8.24)
Blp.0) =~ Blpa = 1) (8.25)
B(p,1) = % (8.26)
Blon) = 2B = 1) = ) (5.27)
B(m,n) = (n(;ni)!é”:;)! = I;((Qi%) (8.28)

Zadanie 8.4 Udowodnié¢ nieréwnosé Schwarza (lemat 8.3).
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Wyktad 9

2003.04.14 / 3h

9.1 Catkowanie funkcji o wartosciach wektorowych — dtugosé tuku krzywej

Uwaga 9.1 Piszqc, ze funkcja wektorowa nalezy do pewnej klasy (np. jest ciggla) mamy na mysli, Ze wszystkie jej skladowe

sq z tej klasy.

Definicja 9.1 Mowimy, zZe funkcja fjest catkowalna wtedy i tylko wtedy, gdy dla dowolnego i = 1,...,d calkowalne sq
funkcje fi (fi € R([a,b]). Piszemy wtedy fe R([a, b], R?). Ponadto

b

/ t)dt / £t / A(t)dt). (9.1)

Twierdzenie 9.1 (Newtona - Leibniza) Jezeli f € R([a,b],R?) i istnieje F € C([a,b]) N D(Ja,b]) taka, ze F' = f, to

= F(b) — F(a). (9.2)

\v

Twierdzenie 9.2 Jezeli fe R([a,b], R?), to
(i) ||f|| € R([a, b]),

b

(it) Hff el < [ F(®)]dt.

a

Definicja 9.2 Niech v:[a,b] — R?. Krzywq v nazywamy prostowalng wtedy i tylko wtedy, gdy L(v) < +oo, gdzie L(7y) =

sup Y ||y () — y(tiz1)|l, punkty t; sq punktami podzialu P.
PeP([a,b]) i=1

Twierdzenie 9.3 Niech v:[a,b] — R? bedzie krzywq klasy C([a,b]) (wszystkie jej skladowe sq klasy C*([a,b])). Wtedy

krzywa v jest prostowalna oraz

b
7 = / I/ (), ©3)

gdzie |/ (D)l = /(1 (0)* + ... + (7).

9.2 Zbieznos¢ ciggéw funkcyjnych — podstawowe pojecia
Niech X # 0 i (X, 7) bedzie przestrzenia topologiczng oraz niech {f,: X — R : n > 1} bedzie ciagiem funkeji oraz f: X — R.
Definicja 9.3 Mdwimy, ze cigg {fn : n > 1} jest zbiezny punktowo do funkcji f wtedy i tylko wtedy, gdy

Veex I _fula) = £(2), (9.4
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czyli
VaexVes03noeNTnzno | fn(x) — f(2)] < e. (9.5)

Piszemy wtedy f, — f.

Definicja 9.4 Mdwimy, ze cigg {fn : n > 1} jest zbiezny jednostajnie do funkcji f wtedy i tylko wtedy, gdy
Ve>03noeNVn>noVweX|fn($) — f@)] <e. (9.6)

Piszemy wtedy f, = f.

Definicja 9.5 Moéwimy, Ze cigg funkcyjny {f. : n > 1} jest zbiezny lokalnie jednostajnie na zbiorze X do funkcji f wtedy
1 tylko wtedy, gdy dla dowolnego punktu x € X istnieje jego otocznie O, C X, Ze cigg funkcyjny na tym otoczeniu zbiega
jednostagnie tzn.

szXEIOzv5>03no€an>novt€Om |fn(t) - f(t)l <Eé. (9'7)
L
Piszemy wtedy f, = f.

Definicja 9.6 Mowimy, Ze cigg funkcyjny {fn : n > 1} jest zbiezny niemal jednostajnie na zbiorze X do funkcji f wtedy 1
tylko wtedy, gdy dla dowolnego zbioru zwartego K C X ciqg funkcyjny na tym zbiorze zbiega jednostajnie tzn.

vI(QX7 zwa'rtegovs>03noGan>ngvt€K|fn (t) - f(t)‘ <e. (98)
N
Piszemy wtedy f, = f.

Whniosek 9.1 Nastepujgce warunki sq réwnowazne

=i (9.9)
sup | fu(z) = f(z)] — 0 (9.10)

Twierdzenie 9.4 Jezeli cigg funkcyjny jest zbieiny jednostajnie, to jest zbiezny lokalnie jednostajnie.
Twierdzenie 9.5 Jezeli cigg funkcyjny jest zbiezny lokalnie jednostajnie, to jest zbiezny niemal jednostajnie.
Whniosek 9.2 Jezeli cigg funkcyjny jest zbiezny jednostajnie, to jest zbiezny niemal jednostajnie.
Twierdzenie 9.6 JeZeli cigg funkcyjny jest zbieiny lokalnie jednostajnie, to jest zbieiny punktowo.

Whniosek 9.3 Jezeli cigg funkcyjny jest zbiezny jednostajnie, to jest zbiezny punktowo.

9.3 Zadania

Zadanie 9.1 Udowodnié, e jeieli ¥,i € R? oraz a € R, to

la- 2| = [a] - [|Z]] (9.11)
12+ 71| < [|Z]] + (7] (9.12)
12 =gl < 1]} + {17l (9.13)
2] = l7ll < |2+ 7| (9.14)
2] = (17 < [[# = (9.15)
Nzl = 171l < 1€ = 4 (9.16)
Zadanie 9.2 Okreslmy funkcje dg: R? x RY — R, U {0} wzorem
de(@, ) = 17 3. (9.17)

Pokazaé, ze spelnia ona warunki definicji odleglosci, a wigc (RY,dg) jest przestrzeniq metryczng.
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Wyktad 10

2003.05.05 / 3h

10.1 Zbieznosé¢ ciggéw funkcyjnych c.d.
Niech X # 0 i (X, 7) bedzie przestrzenia topologiczna oraz niech {f,: X — R : n > 1} bedzie ciagiem funkcji oraz f: X — R.
Przyktad 10.1 Niech X =[0,1] oraz f,(x) = ™. Wtedy (fy) zbiega punktowo do funkcji

O dlaze]0,1]
f(x)_{l dla x =1 .

Nie jest zbiezny ani jednostajnie, ani niemal jednostajnie, ani lokalnie jednostajnie.

Przyktad 10.2 Niech X =R oraz f,(v) = 1755.5. Wtedy (fs) zbiega punktowo do funkcji f = 0. Podobnie nie zbiega on

ani jednostajnie, ani niemal jednostajnie, ani lokalnie jednostajnie.

Przyktad 10.3 Niech X =R oraz f,,(v) = 1555552 Wtedy (fn) zbiega punktowo do funkcji f = 0. Zbiega on jednostajnie,

a wiec © niemal jednostajnie oraz lokalnie jednostajnie.

Przyktad 10.4 Niech X = R oraz f,(x) = =@ Wtedy (fn) 2biega punktowo do funkcji f = 0, nie zbiega on jedno-

stajnie, ale zbiega niemal jednostajnie oraz lokalnie jednostajnie.

Twierdzenie 10.1 Jezeli X jest przestrzeniq zwartq, to zbieznosé jednostajna jest rownowazna zbiezZnosci niemal jednostaj-

nej.
Whniosek 10.1 Jezeli X jest przestrzeniq zwartq, to zbiezno$é jednostajna jest rownowazna zbieznosci lokalnie jednostajne;.

Definicja 10.1 Przestrzeri topologiczng (X, T) nazywamy lokalnie zwartg wtedy i tylko wtedy, gdy kazdy punkt ma otocznie

bedgce zbiorem zwartym.
Przyktad 10.5 Jednowymiarowa przestrzen euklidesowa jest przestrzeniq lokalnie zwartg.
Przykltad 10.6 Kazdy odcinek otwarty jednowymiarowej przestrzeni euklidesowej jest przestrzeniq lokalnie zwartg.

Twierdzenie 10.2 Jezeli (X, 1) jest przestrzeniq lokalnie zwartg, to zbieznos¢ niemal jednostajna jest réwnowazna zbiez-

nosci lokalnie jednostajney.

Uwaga 10.1 Pojecie przestrzeni lokalnie zwartej jest ostabieniem warunku przestrzeni zwartej, gdzyz dowolny zbior otwarty

przestrzeni zwartej jest lokanie zwarty.

Whniosek 10.2 Dia jednowymiarowej przestrzeni euklidesowej zbiezno$é niemal jednostajna i lokalnie jednostajnej sq row-

nowazne.
Definicja 10.2 Cigg funkcyjny {f» : n > 1} spelnia jednostajny warunek Cauchy’ego wtedy i tylko wtedy, gdy

\V/E>OEITL0€NVTL,M27LOV$EX|f7l(x) - .fm(l‘)| < €. (101)
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Twierdzenie 10.3 Cigg funkcyjny {fn : n > 1} jest zbieiny jednostajnie wtedy i tylko wtedy, gdy spelnia jednostajny
warunek Cauchy’ego.

Od tej chwili rozwazamy zamiast przestrzeni topologicznej (X, 7) przestrzen metryczna (X, d).

Twierdzenie 10.4 Cigg funkcyjny {fn : n > 1} jest zbiezny lokalnie jednostajnie do funkcji f oraz wszystkie wyrazy tego
ciggu sq funkcjami cigglymi w punkcie p € X, to f jest funkcjq ciagle w punkcie p.

Whiosek 10.3 Cligg funkcyjny {fn : n > 1} jest zbieziny lokalnie jednostajnie do funkcji f oraz wszystkie wyrazy tego ciggu
sq funkcjami cigglymi, to f jest funkcjq cigglq.

Uwaga 10.2 Istnieje cigg funkcyjny funkcji cigglych zbiezny punktowo do funkcji cigglej, ktory nie jest zbieiny lokalnie
jednostagnie.

Przyktad 10.7 Niech X = [—1,1] oraz niech f, = nx(1 — x2)". Wtedy f, — f = 0 i wszystkie funkcje sq ciggle. Jednak

zbieznosé nie jest lokalnie jednostajna (dla punktu x=0 nie istnieje otoczenie, gdzie bylaby zbieznodé jednostajna), gdyz dla

n

2 n
p: \/ﬁ mamy f’n(p): \/1+2n (17 1_;'_12,”) 4)+OO, gdyn%*l»oo.

Whiosek 10.4 Cigg funkcyjny {fn : n > 1} jest zbieiny jednostajnie do funkcji f oraz wszystkie wyrazy tego ciggu sq
funkcjami cigglymi, to f jest funkcjg cigglq.

Uwaga 10.3 Ponizsze twierdzenie jest uogélnieniem twierdzenia 10.4.

Twierdzenie 10.5 Niech punktp € X bedzie punktem skupienia zbioru E C X oraz niech {fn: E — R|n > 1} bedzie ciggiem

zbieznym jednostagnie na zbiorze E. Wtedy ciqg liczbowy (4A,), gdzie A, = lim f,(z), jest zbiezny oraz
Tr—p

lim lim f,(z) = lim lim f, (). (10.2)
n—o0 T—p T—p n—00

Uwaga 10.4 Przy dodatkowych zaloZeniach otrzymujemy twierdzenie odwrotne do twierdzenia 10.4.

Twierdzenie 10.6 (Diniego) Niech (X,d) bedzie przestrzenig lokalnie zwartq. Niech cigg funkcyjny {fn : n > 1} funkcji
cigglych bedzie monotonicznie zbiezny do funkcji cigglej f. Witedy cigg tej jest lokalnie jednostajnie zbiezny.

Uwaga 10.5 Poniewaz w przestrzenie lokalnie zwartej zbiezno$¢ niemal jednostajna i lokalnie jednostajna sq rownowazne,
to w twierdzeniu Diniego wystarczy udowodnié zbieznosé niemal jednostajq.

10.2 Zadania

Zadanie 10.1 Pokazaé bezposrednio z definicji, Ze cigg funkcyjny z przykladu 10.1 nie jest jednostajnie, lokalnie jednostajnie
1 niemal jednostagnie zbiezny.
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Wyktad 11

2003.05.12 / 3h

11.1 Zbieznos$¢ jednostajna ciggu funkcji jednostajnie cigglych
Twierdzenie 11.1 Cigg funkcyjny {fn : n > 1} jest zbiezny jednostajnie do funkcji f oraz wszystkie wyrazy tego ciggu sq

funkcjami jednostajnie cigglymi, to f jest funkcjg jednostajnie cigglg.

11.2 Przestrzen C(X)

Definicja 11.1 Niech (X,d) bedzie przestrzenig metryczng. Zbidr wszystkich funkcji cigglych i ograniczonych na X ozna-

czamy przez C(X). Odwzorowanie
ef
C(X) 3 f = If1% sup | (@) (1)

nazywamy normag supremum.

Lemat 11.1 Norma supremum speinia natepujgce warunki

Veecx)IfIl =0 f=0 (11.2)
Vigeccolf +al < I+ lgll (11.3)
Twierdzenie 11.2 Odwzorowanie
def
C(X) x C(X) > (f,9) = dsup(f,9) = || f — 4l (11.4)

jest metrykq w C(X). Nazywamy jg metrykqg supremum.

Whiosek 11.1 Cligg funkcyjny {fn: X — R :n > 1} jest zbieiny do funkcji f w sensie metryki supremum wtedy i tylko
wtedy, gdy frn3f.

Stwierdzenie 11.1 Przestrzen metryczna (C(X),dsup) jest zupetna.

Uwaga 11.1 JezZeli X jest zwarta, to obraz kazdej funkcji cigglej jest zwarty, a wiec domkniety i ograniczony. Wynika stqd,
ze w tym przypadku za definicji zbioru C(X) mozemy przyjaé wylacznie warunek cigglosci funkcyi.

11.3 Zbieznos¢ szeregéw funkcyjnych

fr bedzie
1

Niech (X, d) bedzie przestrzenia metryczna oraz niech {f,: X — R : n > 1} bedzie ciagiem funkcji oraz S, =

n
k=
ciagiem sum czesciowych.

Uwaga 11.2 Mozna zamiast przestrzeni metrycznej (X, d) rozpatrywaé ewentualnie sytuacje X C R.
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(o]

Definicja 11.2 Mdéwimy, zZe szereg > fn jest zbieiny punktowo (odpowiednio jednostajnie, lokalnie jednostajnie, niemal
n=1

jednostajnie) wtedy i tylko wtedy, gdy jego cigg sum czesciowych jest zbiezny punktowo (odpowiednio jednostajnie, lokalnie

jednostajnie, niemal jednostajnie).
o0 o0

Definicja 11.3 Mdwimy, ze szereq > fn jest zbiezny bezwzglednie wtedy i tylko wtedy, gdy > |fn| jest zbieiny punktowo.
n=1 n=1

Uwaga 11.3 Przez zbior punktéw zbieznosci (zbieénos’ci bezwzglednej) bedziemy rozumieé zbidr tych wszystkich punktéw
x € X dla ktérych szereg Z fn (odpowiednio szereg Z |fnl) jest zbieiny punktowo. Natomiast przez obszar zbieinosci

bedziemy rozumieé wnetrze zbwru punktow zbieznosci, czylz nawiekszy zbior otwarty zawarty w zbiorze punktow zbieznosci.

Nalezy podkreslic, ze zbior punktow zbieznosci moze byé niepusty podczas, gdy obszar zbieznosci moze byé pusty.
o0
Twierdzenie 11.3 Szereg > f, jest zbieiny jednostajnie wtedy i tylko wtedy, gdy
n=1

k

Z fn-‘rm(x)

m=1

VE>OE|TLUENV7L27LOVI€ENV(L‘€X < €. (115)

Twierdzenie 11.4 Niech dany bedzie cigg {fn : n > 1} funkcji cigglych, jezeli szereg jest zbieiny lokalnie jednostajnie, to
oo
funkcja x — > fn jest funkcjq cigglg.

n=1

Twierdzenie 11.5 (Kryterium Weierstrassa) Jezeli spelnione sq warunki

vnENva:EX‘fn(aj” < (£79) (116)
> an < +oo, (11.7)
n=1

o0
to szereq Y fn jest zbiezny jednostajnie.
n=1

Twierdzenie 11.6 (Dirichleta) Dane sq dwa ciggi funkcyjne {fn :n > 1} i {gn : n > 1}. Jezeli spelnione sq¢ warunki
(i) Cigg sum czesciowych ciggu {fr, : n > 1} jest jednostajnie ograniczony

(ii) Cigg {gn : m > 1} jest nierosngcy
(iii) Cigg {gn : n > 1} jest jednostajnie zbiezny do funkcji tozsamosciowo réwnej zeru,
o0

to szereq > fngn jest jednostajnie zbieiny.

n=1
Twierdzenie 11.7 (Abela) Dane sq¢ dwa ciggi funkcyjne {fn :n > 1} i {gn : n > 1}. Jezeli spelnione sq warunki
(i) Szereg i fn jest jednostajnie zbieiny
(i) Cigg {Zz :n > 1} jest monotoniczny
(#ii) Ciag {gn : n > 1} jest jednostajnie ograniczony
to szereg il fngn jest jednostajnie zbieiny.

e

11.4 Zadania

Zadanie 11.1 Rozwazamy norme supremum nie tylko w zbiorze C'(X). Oznacza to, Ze moZe przyjmowaz ona wartosci nie-
skoniczone (+00). Wzorujac sie na warunku koniecznym i dostatecznym zbieznosci jednostajnej szeregu funkcyjnego udowodnicé
nastepujgce twierdzenie:

Szereg funkcyjny > frn jest jednostajnie zbiezny wtedy i tylko wtedy, gdy szereg liczbowy > || fr|| jest zbieiny.
n n
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Wyktad 12

2003.05.19 / 3h

12.1 Zbieznos¢ szeregéw funkcyjnych - zbieznos¢ jednostajna i bezwzgledna

Przyktad 12.1 Niech

0 dla x < L
falz) = ¢ sin® T dla m <z< i, (12.1)
0 dla L <
o0
Wéwezas > fn jest zbiezny punktowo do funkcji cigglej. Nie jest zbiezny jednostajnie oraz jest w kazdym punkcie zbieiny
n=1
bezwzglednie.

o0

Przyklad 12.2 Szereg Y (—1 )’”3 1 jest zbieiny jednostajnie na kazdym przedziale ograniczonym, lecz nie jest w Zadnym
n=1

punkcie zbieiny bezwzglednie.

12.2 Calkowanie ciggéw i szeregéw funkcyjnych

Przyktad 12.3 Rozwazmy cigg funkcyjny fn:[0,7] — R okreslony nastepujgco

def [nsin(nz) dla0<z <%
I =10 dla <o<n

Wtedy f, — f =0, aleffn dx—>2750—ff

Niech a < b oraz niech dany bedzie ciag funkcyjny {fn:[a,b] = R:n > 1}.
Twierdzenie 12.1 Jezeli dla dowolnego n € N mamy f,, € R([a,b]) oraz fr, = f, to wtedy
(i) f € %([a b))

(“)f fn dr — ff

o0
Whiosek 12.1 Jezeli f,, € R([a,b]) dla dowolnej liczby naturalnej n oraz szereg >, fy jest zbiezny jednostajnie, to

n=1

(i) funkcja [a,b] 3 x +— > fo(x) jest calkowalna w sensie Riemanna oraz

aw(zn)M=§ﬁmm

n=1a

Niech teraz —oco < a < b < 400, p €]a,b[ 1 frila,b[—> Rdlan>1

Twierdzenie 12.2 Niech dla dowolnej liczby naturalne n funkcje f, sq ciggle nala,b[ (fn € C(Ja,b[)) oraz f,, zbiega lokalnie

Jjednostagnie do f. Wtedy Fy( f [n(t)dt zbiega lokalnie jednostajnie do funkcji F(x) = [ f(t)dt.
P
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Whiosek 12.2 Niech dla dowolnej liczby naturalne n funkcje f,, sa ciggle na la,b] oraz szereg . fn jest zbiezny lokalnie
n=1

jednostajnie do f. Niech F,(x) = [ fu(t)dt. Wtedy
P

(i) Szereg Z F,, jest lokalnie jednostagnie zbiezny na la, b]

(mf(zn ))it= £ oy

n=1p

Przyktad 12.4 Policzymy nastepujgcq catke

In3 50
/ <Z ne”x> dx
2 n=1

In

. o _ 2 ) . . S . L .
Poniewaz [ne™"*| < ne "2 = p (%) na [In2,1n 3] wiec kryterium z Weierstrassa szereg jest jednostajnie zbieiny i mozna

zmienié kolejno$c catkowania i rozniczkowania. Otrzymujemy wtedy

In3 50 1
/ (Z ne”‘”) dr = —.

2
9 n=1

In

Przyktad 12.5 Policzymy sume szeregu

o0

Z(nJr 1z

n=0

xT o0 oo T o0
Szereq jest lokalnie jednostajnie zbieiny na | — 1,1, a wiec [ (Z (n+ l)t") dt = Y (f(n + 1)t”dt) = > a"tt = 2
0 \n=0 n=0
Tak wiec rozniczkujgc obie strony rownosci otrzymujemy

oo

1
> (n+1)a" =T

n=0

12.3 Robzniczkowanie ciggéw i szeregoéw funkcyjnych
Przyktad 12.6 Niech f,:[—1,1] — R bedg funkcjami zdefiniowanymi wzorem f,(x) = |x| 5 = . Mamy wtedy f,, € C1([-1,1])

i fn =2 f, gdzie f(x) = |z| oraz
= H'T”|9L'|% dlax >0
n —HT”|33|% dlax <0

Ponadto f ¢ D'([-1,1])

Niech —oo < a < b < +00 oraz niech dany bedzie ciag funkcyjny {fn:]a,b[— R:n > 1}.
Twierdzenie 12.3 Niech f, € C'(Ja,b]) oraz niech istnieje taki punkt p €la,b|, ze ciag liczbowy (fn(p)) jest zbieiny i

L
fl=g. Wtedy

L

(i) fn=f
(ii) g = [, wiec g € C*(Ja, b]).

o0 o0
Whiosek 12.3 Jezeli istnieje punkt p €)a,b| taki, ze szereg > fn(p) jest zbiezny oraz > fI jest lokalnie jednostajnie

n=1 n=1

(o]
zbieiny, to wtedy szereg Y. fn jest lokalnie jednostajnie zbieiny i jego suma jest funkcja klasy C1(]a,b[) oraz
n=1

(Zh@)Zﬂ@

Uwaga 12.1 Ograniczajgc sie do odcinka domknietego i pozbywajgc sie zaloZenia o cigglosci pochodnych funkcji ciggu { f, :
n > 1} otrzymujemy nastepujocy rezultat.
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Twierdzenie 12.4 Niech dany bedzie ciqg { fn: [a,b] — R} spetniajocy warunki f, € D*([a,b]) oraz niech istnieje taki punkt
p € [a,b], Ze cigg liczbowy (fn(p)) jest zbieiny i f), =g. Wtedy

(i) fn3f

(ii) g = f', wige g € D'(Ja,b]).

12.4 Zadania

Zadanie 12.1 Udowodnié, ze jesli cigg funkcyjny {fn: X — R :n > 1} jest monotoniczny i jednostajnie ograniczony to jest

jednostagnie zbiezny.
Zadanle 12.2 Niech dany bedzie cigg funkcyjny {fn X = R:n > 1} i funkcja g: X — R ograniczona. Udowodnié, ze jesli

szereq E fn jest jednostajnie zbiezny, to szereg E fng tez jest jednostajnie zbiezny.

n=1 n=1

Zadanie 12.3 Udowodnié, ze suma dwoch ciggow funkcyjnych jednostajnie zbieinych jest ciggiem jednostajnie zbiezZnym.

Zadanie 12.4 Uzasadnié, Ze w twierdzeniu 12.1 mozna zastgpic¢ zbieznos¢ jednostajng zbieznoscig lokalnie jednostajng bgdz

niemal jednostajng.
Zadanie 12.5 Udowodni¢ odpowiednik twierdzenia 12.1 dla calki Riemanna - Stieltjesa.

Zadanie 12.6 Niech (a,,) bedzie ciggiem zbieznym i niech { fn: X — R :n > 1} bedzie ciggiem funkcyjnym takim, Ze f, = a,.

Udowodnié, ze cigg funkcyjny jest jednostajnie zbiezny.
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Wyklad 13

2003.05.26 / 3h

13.1 Istnienie funkcji cigglej nigdzie nier6zniczkowalnej

Przyktad 13.1 Niech [-1,1] 5 = — ¢(z) = |z|. Rozszerzmy funkcje ¢ do funkcji okreslonej na calym R warunkiem
d(x) = p(x  (mod 2))). Okreslamy funkcje f:R — [0,1] warunkiem

f(ac)défi (i)n¢(4nx). (13.1)

n=0

Funkcja jest ciggla. Ponadto w Zadnym punkcie nie posiada pochodney.
Uwaga 13.1 Otrzymalismy nastepujgocy rezultat

Twierdzenie 13.1 Istnieje funkcja rzeczywista okreslona na prostej rzeczywistej, ktora jest ciggla, lecz w zZadnym punkcie

nie posiada pochodnej.

13.2 Szeregi potegowe raz jeszcze

o0

Twierdzenie 13.2 (Abela I) Szereg potegowy > an(x —p)™ o promieniu zbieznosci R jest niemal jednostajnie zbiezny w
n=1

kole zbieznosci.

o0
Whiosek 13.1 Funkcjalp — R,p+ R[>z — Y. an(x —p)" jest funkcjq ciggla.

n=1
Uwaga 13.2 PoniewaZ pierwotnie funkcje wykladniczq o podstawie e zdefiniowalismy jako sume pewnego szeregu!' korzystajgc

wiec z wniosku otrzymujemy twierdzenie.

Twierdzenie 13.3 Funkcja wykladnicza jest funkcjg cigglg.”

o0
Twierdzenie 13.4 (Abela II) Szereg potegowy Y. an(x — p)™ o promieniu zbieznosci R €]0,+o00[ jest zbieiny w punkcie
n=1

p+ R, to jest jednostajnie zbiezny w [p,p + R].

o0
Whiosek 13.2 Szereg potegowy > an(x—p)™ o promieniu zbieznosci R jest lokalnie jednostajnie zbieiny w calym obszarze
n=1
zbieznosci i jego suma jest funkcjq cigglq.
oo
Twierdzenie 13.5 (O rézniczkowaniu szeregéw potegowych) Niech szereg potegowy > an(z — p)
n=1

™ ma dodatni pro-

n—1

oo}
mien zbieznosci R. Wtedy szereg > nan(z — p) ma rowniez promien zbieznosci R oraz

n=1

Z nan (z — p)n71 = (Z an(z — p)n> )

n=1

na zbiorze {x € R : |x — p| < R}

1Zobacz definicja 12.4
2Jest to twierdzenie 12.9.
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Uwaga 13.3 Mozemy wreszcie udowodnic¢ twierdzenie o pochodnej funkcji wykladnicze;j.

Whniosek 13.3 Zachodzi nastepujgca zaleznosé
(e*) =e". (13.2)

e

Whniosek 13.4 Niech funkcja [ bedzie sumq szeregu potegowego > an,(x — p)™ w zbiorze {x € R: |x — p| < R}. Wtedy
n=1
(i) f € C>*(p—R,p+ R])
o0
(i) f® ()= S nn—-1)...(n —k+ ap(z —p)"F*
n=k

™) ()
(ii) a, = )] n!(p).

Twierdzenie 13.6 Niech szereg liczbowy > a, bedzie zbiezny. I niech dla |z| <1 bedzie
n=1

= Z anpx”
n=1
Wtedy
lim f(z Z n. (13.3)

r—1—

Uwaga 13.4 Udowodnimy na tej podstawie twierdzenie Abela dla iloczynu Cauchy’ego szeregow liczbowych (twierdzenie 7.5).
Przypomnigmy je

Twierdzenie 13.7 (Abela (twierdzenie 7.5)) Jesli szeregi Z A, Z by, Z cn sq zbieine do A,B,C i szereg Z Cn

n=1 n=1 n=1

jest iloczynem Cauchy’ego dwdch pozostalych, to AB=C.

Twierdzenie 13.8 Niech szeregi potegowe Z anx™ 1 Z bpx™ bedg zbieine na przedziale | — R, R[ (R > 0), Niech X bedzie

zbiorem wszystkich punktow tego przedziatu, dla ktorych

i apx" = i bpx". (13.4)
n=1 n=1

Wtedy jezeli zbior X posiada punkt skupienia bedgcy elementem tego przedziatu, to réwno$é (13.4) zachodzi w kazdym punkcie
przedzialu | — R, R|.

Uwaga 13.5 Do dowodu konieczne bedqg nastepujgce twierdzenia

Twierdzenie 13.9 Niech (a;;)$

°5=1 bedzie ciggiem podwdjnym takim, Ze szereg Z b; jest zbiezny, gdzie b; = Z la;;|. Wtedy

i=1 j=1

DD a =) ai (13.5)

i=1 j=1 j=1i=1

[e.e]
Twierdzenie 13.10 (Taylora) Niech szereg potegowy > a,x™ ma dodatni promien zbieznosci R. W kole zbieznosci tego
n=0
o0
szeregu definiujemy funkcje f(x) = > apa™. Jezeli |a] < R, to funkcje f mozna rozwingé w punkcie T = a w szereg potegowy

zbieiny w kole zbieinosci® o promieniu R — |a|, przy czym to rozwiniecie jest postaci

> f(n) (g
)=> ! n'( )(x —a)™ (13.6)
n=0 :

Uwaga 13.6 Rozwiniecie w powyzszym twierdzeniu nazywamy szeregiem Taylora.

3Kolo zbieznoici jest zbiorem {x € R: |z —a| < R — |a|}.
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13.3 Zadania

Zadanie 13.1 Udowodnié, Ze dla nieujemnego ciggu podwdjnego (a;;) zachodzi réwno$é (13.5). Nie wykluczamy przypadku

nieskonczonego.

Zadanie 13.2 Niech cigg podwojny okreslony jest nastepujgco

0 dlai < j
Qi = -1 dla i Zj . (137)
2971 dlai > j

') o0 o0 o0
Udowodnié, ze S > a;; = —2 oraz > > a;; = 0.

i=1j=1 j=1i=1
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Wyktad 14

2003.06.02 / 3h

14.1 Funkcje analityczne
Niech O C R bedzie zbiorem otwartym, zas f: O — R funkcja.

Definicja 14.1 Mowimy, Ze funkcje f analityczna w punkcie xg € O wtedy i tylko wtedy, gdy istnieje szereg potegowy
o0

S an(x — xo)™ 0 niezerowym promieniu zbieznosci R taki, ze
n=1

f(z) =) anle — zo)"

dla x ze zbioru {z € R: |z — zo| < R}.
Jezeli f jest analityczna na O wtedy i tylko wtedy, gdy jest analityczna w kazdym punkcie tego zbioru.

Zbiér wszystkich funkcji analitycznych na zbiorze O oznaczamy C“(O).

Uwaga 14.1 Istnieje funkcja nieskoniczenie wiele razy rozniczkowalna, lecz nie analityczna. Pokazuje to nastepujocy przy-
ktad.

Przyktad 14.1

flz) = {3;2 dla ff 0 (14.1)
xr = U.

[ee]
Twierdzenie 14.1 Niech szereg potegowy > an(x — p)™ ma niezerowy promier zbieznosci R. Wtedy funkcja f(x) =
n=1

o0
> an(x —p)" jest funkcjg analityczng w kole zbieznosci.
n=1

Twierdzenie 14.2 Niech f € C*(]p — R,p + R|), gdzie R jest liczba dodatniq. Wowczas f € C¥(Jp — R,p + R]) wtedy i
tylko wtedy, gdy lim r,(p,h) =0, gdzie r,(p, h) jest resztq (n - tg) w rozwinieciu Taylora.

Twierdzenie 14.3 Niech f € C*(]p — R,p + R|), gdzie R jest liczba dodatnig, bedzie takq funkcjq, zZe cigg pochodnych jest
jednostajnie ograniczony na |p — R,p + R[. Wtedy f jest funkcjq analityczng.
Xk
Przyktad 14.2 Funkcja e® = ) %7 jest funkcjg analityczng.
k=0
Przyklad 14.3 Funkcje sinx i cosx sqg funkcjami analitycznymi. Wyrazajg sie one wzorams

e (_1)kx2k+1

sinz = kz::o T (14.2)
sinx = i M (14.3)

(2k)!

k=0
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14.2 Twierdzenie Stone’a - Weierstrassa

Celem niniejszego paragrafu jest sformulowanie jednego z najwazniejszych twierdzen analizy matematycznej, a jednoczesnie
analizy funkcjonalnej, a mianowicie twierdzenia o gestosci algebr o okreslonych wlasno$ciach w zbiorze funkcji ciaglych
okreslonych na zbiorze zwartym.

Twierdzenie 14.4 (Weierstrassa) Niech f bedzie funkcjq ciggle okreslong na odcinku [a,b] (a < b). Wtedy istnieje cigg

wielomianéw {Pp:[a,b] — R :n > 1} zbiezny jednostajnie do funkcji f.

Whniosek 14.1 Dla dowolnego odcinka [—a,a] (a > 0) istniej cigg wielomiandw {Py: [a,b] — R:n > 1} taki, ze P,(0) =04

lim P,(z) = |z| jednostajnie na [—a,a).
Niech X # () bedzie dowolnym zbiorem oraz niech 2 = {f: X — R} bedzie zbiorem funkcji.

Definicja 14.2 Zbior funkcji A nazywamy algebrq wtedy i tylko wtedy, gdy

Vigeaf+ge (14.4)
ch]RVfGQ[C -fed (14.6)

Definicja 14.3 Powiemy, Ze zbior funkcji U rozdziela punkty zbioru X wtedy i tylko wtedy, gdy

Voyex® # yIreaf(x) # f(y). (14.7)
Definicja 14.4 Powiemy, ze zbior funkcji U nie znika w Zadnym punkcie X wtedy i tylko wtedy, gdy
VoexTpeaf (@) # 0. (14.8)

Przyktad 14.4 Zbior wielomianow jest algebrg rozdzialajgcg punkty R i nie znikajgcqg w Zadnym punkcie R.

Przyklad 14.5 Zbior wielomianow stopnia parzystego jest algebrg nie rozdzialajgcq punktow R 1 jest algebrg nie znikajgcq

w zadnym punkcie R.

Przykltad 14.6 Zbior wielomiandéw stopnia nieparzystego jest algebrq rozdzialajgcg punkty R i nie jest algebrq mie znikajgcg

w zadnym punkcie R.

Twierdzenie 14.5 Niech 2 bedzie algebrq wszystkich funkcji rozdzielajgcg punkty zbioru X i nie znikajgcqg w Zadnym punkcie
zbioru X . Niech x,y € X bedg dowolnymi dwoma réznymi punktami zbioru X, a o © B dowolnymi stalymi. Istnieje wtedy

funkcja f € A taka, zZe f(x) =a i f(y) = 5.
Niech dodatkowo (X, d) bedzie przestrzenia metryczna.

Definicja 14.5 Zbior funkcji A nazywamy jednostajnie domknietym wtedy i tylko wtedy,

v{f,,L:nZI}CQlfn :)>f = f e (149)

Definicja 14.6 Zbior

def

Ba = {1 X = R:3f msnycafn3f} (14.10)

nazywamy jednostajnym domknieciem zbioru .

Twierdzenie 14.6 Niech By bedzie jednostajnym domknieciem algebry A, ktorej elementami sqg funkcje ograniczone. Wtedy
By jest jednostajnie domknieta.

Twierdzenie 14.7 (Stone’a - Weierstrassa) Niech 2 bedzie algebrg funkcji rzeczywistych, cigglych, okreslonych na zbio-
rze zwartym K. Jezelt A rozdziela punkty zbioru K 1 nie znika w Zadnym punkcie zbioru K, to By jednostajne domkniecie

algebry A zawiera wszystkie funkcje rzeczywiste ciggle na K.

Uwaga 14.2 Twierdzenie Stone’a - Weierstrassa mozna sformufowad nastepujgco:

Algebra funkcji rzeczywistych, cigglych, okreslonych na zbiorze zwartym K rozdzielajgca punkty zbioru K i mie znikajgca w
zadnym punkcie zbioru K jest podzbiorem gestym w przestrzeni metrycznej funkcji rzeczywistych cigglych na K z metrykg
supremum.
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14.3 Zadania

Zadanie 14.1 Wyprowadzi¢ wzory na sinus i cosinus jako szeregi nieskoriczone za pomocg twierdzania Taylora.

Zadanie 14.2 Udowodnié, ze kazdy wielomian jest funkcjg analityczng.

Zadanie 14.3 Udowodni¢ indukcyjnie, ze funkcja z przykladu 14.1 jest nieskoniczenie wiele razy rozniczkowalna w punkcie

ZETO.
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Wyktad 15

2003.06.09 / 3h

15.1 Twierdzenie Stone’a - Weierstrassa w wersji zespolonej
15.2 Szeregi Fouriera

15.3 Zadania
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Wyklad 16

Egzamin

16.1 Zagadnienia na egzamin teoretyczny

1. Monotonicznosé, a pochodna.
2. Jednostajna cigglto$¢, a pochodna.
3. Ekstrema. Ekstrema, a pochodna.
(a) Pojecia otoczenie, sasiedztwo, ekstremum.

(b) Twierdzenie Fermata i I warunek dostateczny istnienia ekstremum.

(¢) Inne twierdzenia z tego zakresu.

4. Pochodne wyzszych rzedéw. Wzér Taylora.
(a) Pojecie pochodnych wyzszych rzedéw.
(b) Wz6r Leibniza.

d

)
)

(c) Twierdzenie Taylora i Maclaurina.

(d) II warunek dostateczny istnienia ekstremum.
)

(e) Regula de 'Hospitala
5. Wklestoéé¢ i wypuklosé, a pochodna.

(a) Wklestosé i wypuklo$é, a pochodna.
(b) Warunek konieczny istnienia punktu przegiecia.

(¢) Warunki dostateczne istnienia punktéw przegiecia.
6. Catka nieoznaczona

a) Pojecie calki nieoznaczonej i podstawowe wzory.

(
(b

Klasyczne twierdzenia o catkowaniu dla catki nieoznaczone;j.

d

)
)

(c) Caltkowanie funkcji wymiernych.

(d) Calkowanie funkcji trygonometrycznych.
)

(e) Catkowanie funkcji niewymiernych. Podstawienia Eulera.
7. Calka Riemanna i Riemanna - Stieltjesa.

(a) Definicja calki Riemanna.
(b) Definicja calki Riemanna - Stieltjesa.

(¢) Zwiazki miedzy sumami dolnymi i gérnymi oraz calka dolna, gérna.
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(d) Warunek konieczny i dostateczny catkowalnosci i wniosek z niego.
(e) Klasy funkcji catkowalnych w sensie Riemanna - Stieltjesa.
i. Funkcje ciagtle;
ii. Funkcje monotoniczne;
iii. Funkcje ograniczone;
iv. Twierdzenie o zlozeniu;
(f) Wlasnosci catki Riemanna - Stieltjesa.
i. Twierdzenie Wlasnoéci catki Riemanna - Stieltjesa
ii. Twierdzenie o iloczynie funkeji i twierdzenie wartosci bezwzglednej.
iii. Catka wzgledem funkcji schodkowej.
iv. Wyrazenie calki Riemanna - Stieltjesa przez catke Riemanna.
v. Twierdzenie o zamianie zmiennych i wnioski z niego.
(g) Klasy funkeji catkowalnych w sensie Riemanna — twierdzenie Lebesgue’a.
i. Zbiory miary zero i zbiér Cantora.
ii. Twierdzenie Lebesgue’a i wnioski z niego.
(h) Calkowanie (catka Riemanna), a rézniczkowanie.
i. Zasadnicze twierdzenie rachunku rézniczkowego i catkowego.

ii. Twierdzenie Newtona - Leibniza i twierdzenie o catkowaniu przez czesci

8. Calki niewlasdciwe Riemanna.

(a

) Okreslenie calki niewlasciwej.
(b) Calka niewltasciwa z funkcji catkowalnej w sensie Riemanna.
)

(c) Wtasnosci catek niewlasciwych.
(d) Kryterium poréwnawcze zbieznosci calek niewlasciwych.

e) Kryterium catkowe zbieznosci szeregu.

)
()
(f) Kryterium Abela - Dirichleta zbieznosci caltek niewlasciwych
(g) Kryterium zbieznosci bezwzglednej calek niewlasciwych.
(h) Inne kryteria zbieznosci calek niewlasciwych.

)

(i

9. Calki niewlasciwe Riemanna zbiezne w sensie wartosci gtéwnej.

Wazne catki niewlasciwe.

(a) Pojecie calki zbieznej w sensie wartosci gléwnej.

(b) Zwiazek miedzy zbieznoscia w sensie wartosci gléwnej na prostej, a zbieznoscia calki niewlasciwe;j.
10. Funkcja logarytmiczna (wg Kleina) i wykladnicza — inaczej.
(a) Okreslenie i wlasnosci logarytmu.
(

b) Okreslenie i wlasnosci funkcji wykladnicze;j.

)
)
(¢) Okreslenie i wlasnosci funkeji potegowej i potegi ogélnej.
(d) Zwiazek liczby e z wartoscia funkcji wykladniczej w punkcie jeden.
11. Catkowanie funkcji o wartosciach wektorowych
(a) Pojecie funkcji wektorowe;j.

(b) Dlugosé tuku krzywej.
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12. Zbieznoé¢ ciagdéw funkcyjnych
(a
(b

(c
(d

Rodzaje zbieznosci.

Zalezno$ci miedzy réznego rodzajem zbiezno$ciami (oczywiste implikacje).

Zaleznosci miedzy zbiezno$cia jednostajng, a niemal jednostajna.

Zaleznosci miedzy zbieznoécia niemal jednostajna, a zbieznoscia lokalnie jednostajna.
(e) Jednostajny warunek Cauchy’ego, a zbiezno$é jednostajna.
(f) Zbieznosé, a ciaglosé.
(g) Twierdzenie o zmianie kolejnosci granic.
(h
@
(J

13. Zbieznoé¢ szeregdw funkcyjnych

Twierdzenie Diniego

Zbieznosé jednostajna ciagu funkcji jednostajnie ciaglych.

)
)
)
)
)
)
)
)
)
)

Przestrzen C(X).

Rodzaje zbieznosci szeregéw funkcyjnych.

(a
(b

Warunek konieczny i dostateczny zbieznosci jednostajne;j.

d

)
)
(¢) Kryterium Weierstrassa Zbieznosci jednostajne;j.
(d) Kryteria Abela i Dirichleta zbieznosci jednostajnej.
)

(e) Zbieznosé jednostajna, a zbieznosé bezwzgledna.
14. Calkowanie ciagéw i szeregéw funkcyjnych.
15. Roézniczkowanie ciggéw i szeregdéw funkcyjnych.
16. Istnienie funkcji ciaglej nigdzie nierézniczkowalne;j.
17. Szeregi potegowe.

(
(

a) Pojecie szeregu potegowego i jego promienia zbieznosci.

b

Twierdzenia Abela.

)
)

(c) Roézniczkowanie szeregu potegowego.

(d) Twierdzenia Abela o iloczynie Cauchy’ego szeregdéw liczbowych (dowdd).
)

(e) Twierdzenie Taylora.
18. Funkcje analityczne.

(a) Pojecie funkcji analitycznej.

(b) Twierdzenia o tym kiedy funkcja gladka jest analityczna.
19. Twierdzenie Stone’a - Weierstrassa.

(a) Twierdzenie Weierstrassa.
(b) Twierdzenie Stone’a.

(¢) Postaé zespolona twierdzenia Stone’a
20. Szeregi Fouriera.

(a) Pojecie wielomianu trygonometrycznego i szeregu Fouriera.
(b) Postaé zespolona szeregu Fouriera.

(c) Podstawowe twierdzenia o szeregach Fouriera.
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16.2 Zadania z egzaminu

1.

2.

3.

10.

Wyznaczy¢ ekstrema i przedzialy monotonicznosci funkeji f(z) = (22 — 1) ¥/(x — 3)2. 4pkt /44pkt
Udowodni¢, ze dla z > 1 zachodzi nieréwnosc¢ e” > e - x. 4pkt/44pkt
Policzyé granice lim+ (%)Sinm. 4pkt/44pkt
oo\
Udowodnié, ze jesli funkcja f jest rézniczkowalna w punkcie p, to }llimo w = f'(p). DopATKOWO: Czy twier-
dzenie Jezeli istnieje skoniczona granica %irr(l) w, to funkcja jest rézniczkowalna w punkcie p jest prawdziwe?
Odpowiedz uzasadnij. 4pkt(+4pkt) /44pkt
Policzy¢ catke ;;rfl dx. 4pkt/44pkt
Policzy¢ calke [ mdx 4pkt/44pkt
T
Niech funkcja f, okreSlona na przedziale [—1,1], bedzie ciagla. Udowodnié, ze zachodzi réwno$é¢ [z f(sinx)dr =
0
Z [ f(sinz)dx. 4pkt/44pkt
0
3 3
Policzy¢ granice lim %\/M 4pkt/44pkt
n—oo n

Wyznaczy¢ obszar zbieznosci, funkcje graniczng oraz okreslié rodzaje zbieznosci dla ciagu funkcyjnego (f,), ktérego

wyrazy zadane sa nastepujaco f,(z) = 2n2az2e""*". 8pkt/44pkt
o) B
Niech dany bedzie szereg potegowy > %(:ﬂr 10)3". Wyznaczy¢ promien zbieznoéci i przedzial zbieznoéci szeregu.
n=1
DoODATKOWO: Wyznaczyé¢ sume szeregu. 4pkt(+4pkt) /44pkt

16.3 Zadania z egzaminu/sytuacja niepewna

1.

2.

Wyznaczyé asymptoty funkeji f(x) = 2’4 5pkt/10pkt

x

o0
Udowodnié, ze jezeli szereg > |fn(x)| zbiezny jest jednostajnie, to na tym samym przedziale zbiezny jest jednostajnie
n=1

szereg > fn(x). 5pkt/10pkt
n=1
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